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Self-pulsing nanocavity laser
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We propose a scheme to achieve controllable self-pulsing operation in a semiconductor photonic-crystal
nanolaser. The scheme is based on coupling two asymmetric nanocavities and pumping only one of them. As
a result, either periodic or chaotic subnanosecond Q-switched pulses can emerge. A coupled-mode approach is
used to model the system and study the bifurcation diagram. An experimental realization is proposed on the basis
of two evanescently coupled photonic-crystal nanocavities.
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Introduction. Nanolasers are very exciting objects of study
since they are believed to be essential building blocks to bridge
the gap between electronics and photonics. They may offer
extremely small footprints and scalability as key ingredients
for future high density integrated optoelectronic circuits.
Physically, the small mode and material volumes in play have
dramatic consequences on fundamental parameters such as
the recombination rates of excited atoms or charge carriers.
In this context, ultrafast laser operation has been recently
demonstrated in photonic-crystal (PhC) cavities [1–4], with
picosecond response times [1] obtained thanks to QED phe-
nomena such as the Purcell effect [5]. Yet, short optical pulses
have only been triggered by ultrashort pump pulses. Building
up stable self-pulsing (SP) lasers at the nanoscale would be a
next step towards the realization of either classic or quantum—
i.e., single photon [6,7]—advanced light nanosources.

Self-oscillatory dynamics has been theoretically studied
in a variety of nonlinear nanocavity systems [8–10]. In a
laser, two main dynamical mechanisms may give rise to
SP: multimode instabilities leading to mode locking, and
single-mode instabilities in the form of amplitude and/or
frequency modulated oscillations. Mode locking relies on
somewhat long microcavities supporting several longitudinal
laser modes. A mode-locked PhC laser has been numerically
investigated in [11], exploiting the large bandwidth of a
20-period, PhC defect cavity and predicting output pulses
as short as a few picoseconds. On the contrary, single-mode
instabilities can generally be obtained in shorter cavities with,
e.g., semiconductor quantum wells as active media, with
longer pulse durations. This is due to both the restricted
bandwidth of single-mode operation, and to the material
relaxation times: 100 ps to 1 ns for carrier recombination in
semiconductors, and 100 ns to 1 μs for thermal diffusion. A
possible single-mode instability leading to self-pulsation in
nanocavities is thermo-optical, regenerative oscillations [12].
It has been reported in L3 PhC nanocavities, made by three
missing holes in the �-K direction of a triangular PhC, in
III-V semiconductors [13] as well as in hybrid graphene-Si
membrane devices [14]. In those experiments, pulse durations
are governed by thermo-optical switching, usually longer than
∼10 ns. Another well-known single-mode instability leading
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to SP is passive Q switching, which can be obtained with an
intracavity saturable absorber [15,16]. Passive Q switching in
nanolasers has not been demonstrated so far.

A question then arises: Is it possible to achieve fast
(multi-GHz) SP nanolasers? Nanocavity is the answer key:
The small mode volume combined with moderate quality
factors may lead to high modulation frequencies. In this regard,
ultrafast modulated oscillations (up to 130-GHz bandwidth)
have been reported in a PhC defect cavity [17], with a
saturable absorber given by the residual absorption of the
laser mode tails. Although high-frequency oscillations were
shown, it has not been confirmed yet whether these PhC
nanolasers exhibited self-pulsation or undamped relaxation
oscillations. In order to build up robust SP nanolasers, we
propose in this Rapid Communication a system based on two
coupled asymmetric PhC nanocavities (Fig. 1) that exhibits
subnanosecond self-pulsation based on saturable absorption.
We show that by controlling the coupling constant between
the two nanocavities, a dynamical regime very different from
the one usually found in single-mode models for bisection
semiconductor lasers can emerge. In particular, the self-pulsing
regime in bisection lasers results from strong optical coupling
between the pumped and unpumped regions and emerges
from global (homoclinic) limit cycle bifurcations. In our
coupled-cavity model, self-pulsing is achieved through local
(Hopf) bifurcations with a significantly reduced coupling
coefficient between the pumped and unpumped cavities.
Electromagnetic simulations are performed on a coupled-
nanocavity system and relevant parameters are extracted that
show the possibility to implement these ideas in a real
system.

Model. Let us suppose that the field in each cavity 1,2
is a1,2 with frequencies ω1,2. We introduce adimensional rate
equations for scaled field amplitudes A1,2 in the rotating frame
at angular velocity ω2 and scaled carrier densities N1,2 with
respect to their transparency values Ñ0 [N1,2 ∝ (Ñ/Ñ0 − 1)]
in each semiconductor nanocavity analogously as in [18].
Coupling of the two cavities is introduced in a coupled-mode
approach. The dynamical equations read

dA1

dt
= −A1 + (1 + iα)A1N1 + (iκ + γ )A2,

dA2

dt
= (−1 + iδ)A2 + (1 + iα)A2N2 + (iκ + γ )A1, (1)

dN1,2

dt
= γr [g1,2 − N1,2(1 + s1,2|A1,2|2)].
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FIG. 1. (Color) Design of the asymmetric, coupled L3 PhC
nanocavity laser. The lattice parameter is a = 435 nm and the hole
radius is r = 0.3a. Two hole radii (in red) are modified to adjust
the detuning between the cavities. The calculated mode profile is
overlayed on the cavity drawing for a modified radius r ′ = 1.15r .
The cavity width is 265 nm and an active layer is grown at its center.

Time has been rescaled to the mode lifetime τc. The
nonradiative carrier recombination rate is γr , and pumping
in each cavity is g1,2 = �σ1,2N0cτc(P/P0 − 1)/n, where � is
the confinement factor, σ1,2 is the differential gain or loss, c/n

is the group velocity, P is the pumping, and P0 is the pumping
at transparency. The scaled pumping g1,2 is positive for a gain
medium, negative for an absorptive medium, and zero at trans-
parency. Carrier and thermal diffusion processes are neglected
in this model. We disregard bimolecular recombination terms
in a first approximation since they are generally negligible with
respect to no-radiative recombination as long as we operate
close to transparency. The phase-amplitude coupling term α

is between 2 and 10 in the case of quantum wells as active
material considered here. The nanocavity fields are coupled
through an imaginary, energy-conserving term, κ . A real
coupling-loss term γ is also included. The saturation parameter
s1,2 is defined as s1 = 1 and s2 = s = σ1/σ2. Finally, both
cavities are detuned by a factor δ = (ω2 − ω1)τc for reasons
that will become clear later. Let us suppose that only cavity
1 is pumped (g1 > 0 and g2 < 0). Therefore, cavity 2 acts as
a saturable absorber cavity and hence s is necessarily much
greater than 1 [19]. We take s = 10. The laser threshold for
a single, uncoupled nanocavity is attained for g1 = N1 = 1.
In order to derive a simple expression for the pump at
laser threshold g1 = gth of detuned coupled cavities, we take
g2 = −1 [20] and no coupling losses (γ = 0). The threshold
can be found by solving

[δ − α(1 + gth)]2 (gth − 1) =
[
κ2

2
+ (1 − gth)

]
(3 − gth)2.

If the coupling constant is small, we get gth � 1 +
2κ2/[(2α − δ)2 + 4]. The threshold naturally increases with
κ because of the increased coupling of energy between
the two cavities and has a maximum for δ = 2α which
corresponds to maximum energy transfer between the two
cavities. This can be easily understood as one recalls that the
phase-amplitude coupling term will progressively detune the
cavities as pump increases. Detuned cavities are less coupled
and thus the intensity needed to saturate the absorption in
cavity 2 will increase. To counteract this effect and maintain a

FIG. 2. (Color online) Bifurcation diagram of the set of
equations (1): Max(I1) vs g1. Continuous line, stable solution; dashed
line, unstable solution; dark, cw solution; red (light gray), SP solution.
Inset: time trace of the periodic pulses at different pump intensities.
Parameters are given in the text.

maximum coupling between the cavities when operating close
to threshold, increasing saturation of the absorber in cavity 2,
we introduce a detuning term δ ∼ 2α.

Numerical simulations. The system of equations (1) is
numerically investigated with the following parameters com-
patible with a semiconductor medium: γr = 0.03, κ = 1,
γ = 0, α = 5, δ = 10, and g2 = −1. These correspond to
τc = 6 ps and to a nonradiative recombination time of carriers
of 200 ps. A bifurcation analysis [21] allows one to monitor the
dynamics and its qualitative changes, as shown in Fig. 2. When
the pump increases, the system starts to lase continuously
at point B. Then the system undergoes a subcritical Hopf
bifurcation (H1) at g1 � 1.60, giving rise to high amplitude
pulses. When the pump further increases, pulses become more
and more nonlinear with a more complex envelope and a longer
tail. Point D marks the end of stable self-pulsation and the
system goes back to its cw steady state. Note that in that region
the system is subcritical again and pulses disappear through
a reverse Hopf (H2). In the self-pulsing region, the SP period
τR varies with pumping between 40τc and 65τc, i.e., between
240 and 400 ps, for pulses (a)–(d) in the inset of Fig. 2. At
the same time, the pulse duration decreases by 25%. Thus, we
predict pulses in the multi-GHz range with shortest durations
around 35 ps.

We analyzed the dynamics for fixed pump g1 = 1.60 in the
(δ,κ) plane (Fig. 3). To do so, we integrate the dynamical
equation (1) up to 5000τc, i.e., after a time range much
longer than any relaxation time in the system, and record
the maximum and minimum amplitude in a 1000τc-long
integration interval. For a sizable range of values of the
detuning δ and of the coupling constant κ , SP dynamics is
found. For certain values of these parameters, a subcritical
behavior is evidenced leading to bistability between a cw lower
branch and a SP upper branch.

The dynamics is not always regular and chaos (Ch region in
Fig. 3) can be found as a result of a series of period-doubling
bifurcations. We have computed the maximum Lyapunov
exponent of the dynamical system using [22]. Regions where
one of the Lyapunov exponents is strictly greater than zero
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FIG. 3. (Color) Simplified bifurcation diagram in the (δ,κ) plane
for g1 = 1.60, superimposed to the maximum amplitude of the
generated pulses. Saddle-node lines (SN) enclose a bistable region
(B) between cw regimes; supercritical, periodic self-pulsing regions
(SP1) are enclosed by Hopf bifurcation lines (H; continuous,
supercritical; dashed, subcritical); (BT), Bogdanov-Takens point;
zero amplitude regions correspond to cw lasing; SP2, periodic,
subcritical self-pulsation. Region delimited by the yellow line is
chaotic (Ch). Other parameters are the same as in Fig. 2.

are enclosed in yellow in Fig. 3. This behavior occurs in the
subcritical region, giving interesting prospects for switchable
chaotic nanolaser sources. In the limit of very high coupling
(κ � 1), we recover the SP scenario of the Yamada model,
which describes a bisection laser with intracavity saturable
absorber [23], giving the ability to attain the excitable regime
[24]. In this model, SP occurs through a homoclinic bifurcation
giving rise to pulses with an infinite period at threshold. Thus,
we may expect that our scheme gives more robust pulses with
respect to noise, and in particular, we expect less pulse to pulse
jitter.

Experimental feasibility. Photonic crystals are ideal plat-
forms to implement coupled nanocavity systems. We choose
the paradigmatic L3 nanocavities as versatile and robust
cavity geometry. Yet, we emphasize that the general concept
presented above is not a priori restricted to a particular design.
Standard cavity Q factors of the order of a few thousands are
targeted as a good compromise between a low laser threshold
and a short (picosecond) cavity lifetime [17]. Two adjacent
PhC cavities are coupled by evanescent fields. The optical
coupling strength depends on both the cavity separation and
the coupling direction [25]. Carrier diffusion can be ignored
in that case since the diffusion length is estimated to be√

Dh/γr � 300 nm for our typical semiconductor parameters,
with Dh = 5 cm2/s the hole diffusion constant [26], which
is far below the intercavity distance d = 1 μm considered
here. In the same spirit, thermal diffusion is characterized
by a diffusion constant of the order of Dth = 0.33 cm2/s [27].
This means that the temperature reaches the same value in
both cavities after a transient time d2/Dth � 30 ns. Therefore
our model remains valid within quasi-cw or cw pumping
conditions.

In order to study regimes with coupling parameters close
to 1 as in previous paragraphs, i.e., where the mode splitting is
of the order of the resonance width, frequency splitting must
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FIG. 4. (Color online) Resonant frequency (a), mode lifetime
(b), amplitude ratio (c) and phase difference (d) for the bonding
(blue, dark gray) and antibonding [red (light-gray)] modes versus
hole-size change. Dots, 3D-FDTD simulations; lines, coupled-mode
theory with parameters obtained from the inversion of Eqs. (3) and (4)
and subsequent quadratic fits (see Fig. 5). Inset: single-cavity resonant
frequency shift vs hole-size change, FDTD results (dots), and
quadratic fit (line).

be of the order of ∼100 GHz. This regime is obtained for two
L3 cavities aligned along the �-K direction and separated by
three holes (see Fig. 1).

Our specific goal is to design a PhC coupled-cavity system
with parameters compatible with the previous analysis. First,
we show that we can tune the resonant frequency of a single L3
cavity by modifying two neighboring hole radii (see Fig. 1).
We usethree-dimensional finite-difference time domain [28]
(3D-FDTD) simulations together with a harmonic inversion
algorithm [29] to recover all the cavity parameters (photon
lifetime and losses) as a function of the hole radius change
[Fig. 4(a), inset]. Next, we consider the transparent (N1 =
N2 = 0) regime of model (1), which reads in its dimensional
form

da1,2

dt
= i
1,2a1,2 + iKa2,1, (2)

where 
1,2 = ω1,2 + i/τ1,2 are the complex frequencies, τ1,2

are the cavity lifetimes, and K = κ̃ − iγ̃ is the dimensional
complex coupling constant. We consider two asymmetric
coupled units in the linear regime to retrieve the cavity
parameters of the coupled system. The left nanoresonator
will play the role of the pumped unit (cavity 1), and the
right resonator with the modified holes (cavity 2) will be the
unpumped one. A large bandwidth dipole excitation is placed
at the center of cavity 2 and we simulate by 3D-FDTD the
evolution of the electric fields.

In terms of Eq. (2), this corresponds to the initial con-
ditions a1(0) = 0 and a2(0) = a0, where a0 represents the
excitation intensity. Equation (2) can be solved to give
a2(t) = a2(0)(C+ei
+t + C−ei
−t ), where the plus and minus
signs stand for bonding and antibonding modes, respectively;
C± are given by the initial conditions and the eigenvalues
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FIG. 5. (Color online) (a) Resonant frequencies of cavities 1 and 2 [respectively, green (light-gray) and black dots] obtained by inverting
Eqs. (3) and (4) with FDTD simulation results. Gray triangles, single-cavity resonant frequency. Inset: mode lifetimes of cavities 1 and 2
[green (light-gray) and black open circles]; single-cavity lifetime (gray open triangles). (b) Imaginary (open squares) and real (open diamonds)
coupling parameters obtained as in (a). Dots, normalized cavity detuning; lines, quadratic fits.


± = ω± + i/τ± yield


± = 
1 + 
2 ±
√

(
1 + 
2)2 − 4(
1
2 − K2)

2
, (3)

C+ = 
+ − ω1 − i/τ1


+ − 
−
, C− = 1 − C+. (4)

In addition to the complex eigenfrequencies, the amplitude
ratio and relative phase of the eigenmodes can be directly
extracted from the FDTD simulations. The results are shown
in Figs. 4(a)–4(d), evidencing anticrossing for the eigenfre-
quency curves, and loss splitting [30]. The six real parameters
of Eq. (2) can thus be obtained by numerically inverting
Eqs. (3) and (4). In order to get continuous model parameters,
they are subsequently fitted with quadratic polynomials, as
shown in Figs. 5(a) and 5(b). We observe that (i) the resonant
frequencies of the coupled cavities are slightly blueshifted
compared to those of the single cavity [31,32]; (ii) cavity 1
losses vary within ∼10% of the single-cavity losses due
to the modification in cavity 2; (iii) the coupling constants
slightly change as the cavities are detuned. Solutions of Eq. (3)
with the inverted parameters of Fig. 5 are superimposed
to the FDTD results [Figs. 4(a)–4(d)], showing that our
simple coupled-mode approach can accurately capture the
asymmetric PhC coupled-cavity system. Moreover, coupling
constants κ of the order of 1 together with frequency detuning
δ up to 10 can be realized. For 15% increase of hole
size we obtain (see Fig. 5) parameters close to the target
values for SP. Other coupling configurations [25] could be
used to obtain much higher coupling constants, in particular,

those allowing one to recover a homoclinic bifurcation at
threshold.

Self-pulsing in real system. The real system introduced
so far displays a nonzero real coupling coefficient γ . It also
appears that both cavities have slightly different Q factors and
for a +15% change in hole diameter the photon lifetime of
cavity 1 is 6.8 ps and 6.3 ps for cavity 2. It is easy to introduce
such difference in the original model (1). The complex
coupling term is now (iκ + γ ) = 1.1i + 0.12. Analysis of the
bifurcation diagram shows that SP starts subcritically with high
amplitude pulses at g1 � 1.619 with increasing pumping. We
recover qualitatively the same behavior as shown previously,
i.e., pulse amplitude increases and pulses become more and
more nonlinear with a growing fat tail at the end of the pulse.

Conclusion. In conclusion, we have analyzed a model of
semiconductor coupled-cavity nanolasers that revealed a rich
dynamical scenario, showing the presence of SP and chaotic
dynamics. For such dynamics to appear, we stress that it
is necessary to detune one of the cavities to compensate
for the phase-amplitude coupling term. The ability to tune
the complex coupling coefficient in PhC coupled defect
nanocavities has been used to design a system allowing
the experimental observation of the predicted dynamics, and
allows a great variety of coupling constants to be explored.
Moreover, this system may be interesting in view of studying
parity-time (PT ) symmetry breaking [33] in nanosystems.
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