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Abstract We develop a model that describes the optical re-
sponse of a semiconductor quantum dot medium in a cav-
ity in order to investigate pattern and cavity solitons forma-
tion. This model, beyond the inclusion of the inhomogeneous
broadening of the quantum dot linewidth[1] (due the fluctu-
ations of the quantum dot sizes that arise in self-organized
growth), takes into account more complex phenomena such
as the thermal escape and capture as well as Auger scattering
mechanisms coupling the quantum dot itself with the wet-
ting layer, and carrier diffusion in the unconfined directions
of the wetting layer. We study the conditions for the onset
of bistability and modulational instability and characterize
the patterns formed at the bifurcated solutions. New features
brought by these terms and indications on the most favourable
regimes for cavity solitons formation are discussed.

1 Introduction

Since their first realisations in the early 1990’s, quantum dots
(QD) have raised a remarkable interest in the research fields
concerned with material physics as well as nonlinear and quan-
tum optics. Due to their 3D quantum confinement, QD are the
sole to possess a discrete energy spectrum of bounds states.
Therefore, from the viewpoint of optical transitions QD be-
have much like atoms. However, this comparison may not be
pushed too far, essentially because in solids, quantum con-
finement is obtained as an over-modulation of a crystal po-
tential. As a result, the confinement properties still coexist
with the collective electronic properties. For example, one
of the most common techniques for realising self-assembled
QD is to use the Stransky-Krastanov growth regime where
the QD sit on an ultra-thin 2D quantum well of a few atomic
monolayers thickness called the wetting layer (WL). This in-
troduces a coupling mechanism between the set of discrete
energy levels of the QD and the WL continuum of states that
sensibly modifies the light-matter interaction as compared to
the atomic model. It is however true that QD provide an op-
tical access to the high energy side of their electronic transi-

? Corresponding author : sylvain.barbay@lpn.cnrs.fr

tions at excitation regimes below transparency. This was not
the case for bulk and quantum well systems, although pattern
formation has been reported in such systems in the passive
regime[2,3,4], and this considerably entailed the develop-
ment of phenomena relying on the self-focusing effect. In the
purely dispersive case, the sign of the nonlinear effect con-
ditions the observation of temporal or spatial solitons[5,6].
A self-focusing nonlinearity was shown to be more favorable
for the existence of the so-called Cavity Solitons (CS) [7]. CS
are bistable localised optical states, independently writable
and erasable in the transverse plane of a resonator with large
Fresnel number filled with a nonlinear medium. They can be
moved across the transverse plane by amplitude or phase gra-
dients in the field profile. These properties makes them very
promising candidates for massively parallel, all optical pro-
cessing. Macroscopic systems with materials such as Liquid
Crystal Light Valves [8,9] or Sodium vapor in a cell [10],
have shown robust and controllable CS in large regions of
their parameter space with modest energy requirements, ow-
ing essentially to the extremely favorable conditions brought
by the strong positive Kerr effect exhibited by these materials.

The combination of such properties with the widely ac-
knowledged potential of direct gap semiconductors for inte-
gration, miniaturisation and all-optical processing would con-
stitute per se a breakthrough, making it possible a wealth of
physical experiments and performing applications.

In a previous paper [1], we have developed a two-level
model in order to determine the ability of QD to exhibit a
strong saturable nonlinearity. Our primary concern was to
evaluate the efficiency of the nonlinear optical response in-
troduced by the presence of the inhomogeneous broadening
resulting from fluctuations in the QD size. We have been able
to determine the critical QD density (Nc ' 1012cm−3) for
state-of-the-art InAs QD grown on a GaAs WL to achieve
the onset of modulational instability (MI) that triggers pattern
and CS formation in a microresonator. That model, though,
included some strongly limiting approximations, as it only
considered one electron-hole state and neglected all inter-
actions between the dot itself and the WL on which it sits.
The first assumption underestimated the strength of the non-
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linear interaction, while accounting for spin-paired electrons
should certainly result in a more favourable criterion for the
MI threshold. The model refinements presented in this paper
allow us to account for larger excitation intensities, which
is compulsory if one wants to exploit optical nonlinearities.
The introduction of the complex mechanisms of the QD-WL
interactions is certainly less perspicuous on that issue, as it
modifies the QD population and thus may decrease the non-
linear response and provide a spatial diffusion channel. It is
the scope of the present paper to study the formation of pat-
tern as well as the existence and robustness of Cavity Soli-
tons, under the inclusion of such important aspects of QD ma-
terials. The theoretical/numerical indications will be essential
in view of assessing the feasibility, and providing directions,
for the experimental implementation of a QD CS forming mi-
croresonator, currently in progress at the LPN. We note that
we consider QD having only one well-confined electron and
hole state. This assumption is motivated by our primary goal
to probe the two-level like susceptibility of QD and shall be
discussed in section 2.

There have already been several approaches to the mod-
elling of the optical response of semiconductor QD. Rate equa-
tions models [11,12] describe the mean population dynamics
of a QD ensemble. Random population models use a master
equation for microstates which describes the density of QD
with a given population in interaction with a reservoir [13].
Averaging over the inhomogeneous linewidth, the authors can
recover the absorption/gain of the medium and the phase re-
sponse can be found by a Kramers-Kronig transformation.
More sophisticated models [14,15,16,17,18] take into ac-
count the effects of the WL population that is believed to
yield an important renormalization of the QD energy bandgap,
but disregarding the microscopic dynamics of the carriers be-
tween the WL and the QD. This stationary and quasi-equilibrium
approach neglects Auger processes coupling QD and WL car-
rier distributions, and leading to carrier diffusion through the
WL with possible shortfalls on the MI and CS stability. Our
approach, extends the one developed in [1] with an approach
similar to that of Ref. [19], in the sense that we build a mi-
croscopic model of QD-Bloch equations including WL-QD
interactions.

In doing so, we assume a spatially continuous and homo-
geneous QD medium and ignore band-gap renormalization
effects as long as the WL population is low enough.Indeed,
the analysis and the results performed throughout this work
will concentrate on an unpumped configuration, where all
carriers are generated by an external driving optical field, res-
onant with the QD fundamental transition. The model, how-
ever, lends itself to extension towards a regime of high WL
carrier density (through an electric current or optical pumping
in the WL), and this will be mentioned en passant in Sec.2.

This paper is organised as follows : we describe the the-
oretical model in section 2. Starting from the expressions of
rate equations for carriers in a homogeneous population of
QD, we extend it to the case of an inhomogeneously broad-
ened population. The field equation is then introduced and the
complete sets of equations written in terms of adimensional

rescaled variables. We then perform a comparison between
our electron-hole pair model [1] and the present one. In sec-
tion 3, we characterize the system’s optical properties, and
study the pattern-formation domains and CS. Finally, the MI
threshold conditions are obtained and analysed as a function
of the various parameters determining the QD-WL interac-
tions. The conclusion summarizes the results obtained and
opens some perspectives concerning the use of semiconduc-
tor QD as a passive nonlinear medium for CS formation.

2 Model

2.1 Identical quantum dots

Semiconductor QD have discrete energy levels thanks to the
spatial confinement of carriers. Energy levels are highly de-
pendent on the QD geometry, the strain between the dot and
the host material, and on the materials involved. It is then dif-
ficult to build a model without some general (and reasonable)
assumptions on the electronic structure of the QD.

In this work we consider only the QD fundamental tran-
sition coupled to the WL. This situation constitutes the best
system for the observation of two-level features in QD that
is the concern of this work. Our model can apply e.g. to
small and/or shallow confined QD so that either there is only
one electron and one hole bound states, or the other discrete
states, if any, are well separated from the inhomogeneously
broadened fundamental transition and very close to the WL
continuum states. The WL and eventually additional discrete
sates are thus not expected to contribute significantly to the
optical susceptibility in the vicinity of the fundamental tran-
sition. Intraband transitions between the QD and the WL,
which were recently shown [20,21] to contribute significantly
to the optical susceptibility in certain energy ranges, will also
be neglected for the sake of simplicity and because the gen-
eral impact of such contribution needs further theoretical and
experimental investigations.

In QD, relaxation mechanisms are complex and not fully
understood yet. Nevertheless, we shall incorporate them in
our model through phenomenological escape and capture tran-
sition rates. Following our assumptions for the model, we
shall consider only the WL-QD interactions. The spin dy-
namics is neglected since the spin memory is lost very fast
at room temperature (some ps[22,23]). The coupling mecha-
nisms between the WL and the QD are twofold. On the one
hand carriers can escape or be captured by the dot via thermo-
activation through emission or absorption of lattice phonons.
Thermo-emission and capture mechanisms are important and
fast relaxation mechanisms at room temperature. The typi-
cal timescales involved are in the range of 1 to 10ps. On the
other hand, Auger processes, involving three particles, can
also participate to the carrier exchanges between the QD and
the WL [24]. They are believed to be particularly important
for properly describing QD laser dynamics, especially if the
WL population is large. We will only investigate passive or
weakly pumped QD so that we may assume that the WL pop-
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ulation is small as compared to the situation of current injec-
tion or optical pumping populating the dots through the WL.
We therefore retain only those Auger processes implying first
order contributions in the WL population. These Auger pro-
cesses correspond to a situation where an electron and a hole
are ejected from the QD and a carrier in the WL gains en-
ergy, or to the symmetric processes with respect to electrons
and holes. Finally, elastic diffusion of WL and QD electrons
and holes (not changing the occupation number, i.e. involv-
ing virtual transitions) contributes to the dipole dephasing,
responsible for the large homogeneous linewidth of QD, and
to a shift of the energy levels which can be included into the
transition energies (see [25]).

We start from the single particle semiconductor equations
(see e.g. [26]) where ne,h are the expectation values of the
number of particles operator for the electrons and holes and
p is the corresponding polarization :
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The parameters are γnr the non radiative recombination
rate, Γsp the bimolecular coefficient for spontaneous recom-
bination, ωa the electron-hole recombination pulsation, γp

the polarization damping, E = E exp(−iω0t) + c.c. is the
electric field and d the dipole transition matrix element.

The quantum dot occupation number for the electrons and
holes is given by the sum over opposite spins of the single
particle states ne,h

QD =
∑

s ne,h
s . In our model, we consider

only the fundamental QD transition. The level degeneracy is
then Π = 2 for the two opposite spins. In addition, we ne-
glect the transition energy difference for the exciton and bi-
exciton states since it is usually very small compared to other
broadening mechanisms that we will introduce in the follow-
ing. The QD population is now ne,h

QD = Πne,h and the total
polarization pQD = Πp. In the rotating wave approxima-
tion, taking the dipole matrix element d real and introducing
pQD = PQD exp(−iω0t) + c.c., (1,2) become
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where we have introduced the single-dot detuning from
resonance ∆ = (ωa − ω0)/γp.

The first QD-WL relaxation term describes the thermo-
activated processes. For the sake of simplicity we ignore the
possible non local interaction between the QD and the WL,
drop the subscript QD in the variable names and write

∂ne,h
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WL
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(5)

where Ne,h
WL is the surface density carrier population in

the WL. γe,h
esc and σe,h

cap are respectively the escape rate from
the QD and the capture rate cross-section into the QD. The
second QD-WL relaxation terms describe the Auger processes
[24]. For a low WL carrier density, we retain only those terms
that are in first order in N e,h

WL:
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The first term describes the excitation of an electron to
the WL via the interaction of a hole in the WL and in the QD,
and the second term is a symmetric process that describes
the capture of a WL electron in the QD via the interaction of
a WL and a QD hole. For the sake of conciseness, we will
refer to the symmetric process in the following by ´´sym.´´ in
the equations. Bhe,eh has the units of a cross-sectional rate
(L2T−1). A similar term exists for the holes :
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Given the fast polarization decay time for the QD polar-
ization γ−1

p with respect to the other decay times, we perform
an adiabatic elimination of PQD in (3) and obtain :
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Substituting in eq.(4) we obtain:
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The rate equation for the WL carrier population is given
by
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where γWL
nr is the non-radiative decay term, and Λ is a

pumping term. The inclusion of the latter is proposed here for
sake of generality. Indeed, the electrically pumped configura-
tion for MQW-based microresonators has proven successful
to predict and observe stable CS[7,27,28]; on the other hand,
ensuring a homogeneous and efficient electrical or incoher-
ent optical pumping[29], requires a much more sophisticated
architecture of the resonator, so that the first envisaged ex-
periments will most likely be in the unpumped configuration.
For such reasons, and in order to maintain this work onto a
closer path to Ref.[1], the study of a pumped medium will
be postponed to a future work and we shall restrict here to
Λ = 0. Note the diffusion coefficient D which spreads out
any initially localised excitation in the transverse plane and
may contribute to diffusively couple QD at different loca-
tions. We have neglected the spontaneous emission process
in the WL since we only consider first order process in NWL.
Considering a constant spatial density of QD NQD, the Auger
term and the capture term read:
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2.2 Collection of dots

In the Stransky-Krastanov growth mode, QD have non-identical
heights resulting in a broadening of the spectral linewidth of
the dot ensemble. To account for this, we weigh the contribu-
tion of each class of dots by a Gaussian statistical weight:

G(∆i,∆) =
1

Γ/γ
√

π
exp−

(

∆i −
γ

Γ
∆
)2

(13)

as determined by the detuning from the center ωi of the
inhomogeneously broadened line in the same manner as in
[1]. We also introduce ∆i = (ωi − ω0)/Γ the field detun-
ing from the QD population line-center and Γ the inhomo-
geneous QD linewidth. The susceptibility of the inhomoge-
neously broadened QD population then stems from the sum-
mation of the responses of individual QD weighed by their
Gaussian statistical contribution. The WL equation is only
modified through the QD-WL interaction terms (11,12) keep-
ing in mind that Auger or capture processes cannot involve
two different dots, so that the carriers captured by all the dots
(which equals the total population lost by the WL) is then just
the capture rate for one spectral class of dots summed over all
the distribution :
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The field equation is obtained by following the same pro-
cedure as in [7,27]. In the mean-field limit and introducing
the appropriate scalings[30], we can write the equation for
the intracavity field E in an adimensional form :

∂E

∂t
= −

[

(1 + iθ)E − EI − i∇2
⊥

E−

2C

(
∫

1 − i∆

1 + ∆2
(ne + nh − Π)G(∆i,∆)d∆

)

E

]

. (16)

We have introduced θ = (ωc − ω0)/κ, the scaled cavity-
field detuning with κ = cT/2nbL the field decay rate, and

2C =
d2ω0NQD

ε0~γpnbcT
. (17)

EI refers to the injected field while the transverse Lapla-
cian ∇2

⊥
accounts for the diffraction inside the cavity. The

time coordinate is rescaled to the field decay time κ−1 while
the spatial transverse coordinates are rescaled to the square
root of the diffraction coefficient a = c/2nbkoκ. L is the
cavity length and k0 is the field wavevector. The adimensional
field variables are defined through the scalings E/

√

~2γpγnr/2d2 →
E and −i

√

RT~2γpγnr/2d2 with T = 1 − R the mirror
mean transmittivity. Recalling that the intensity absorption
coefficient is related to the susceptibility χ by α = −ω0=m[χ]/cnb,
with nb the background refractive index, it is easy to see that
C has the dimension of αL/T and is therefore related, as ex-
pected, to the ratio of absorptive loss to cavity losses. The
carrier equations can also straightforwardly be recast in an
adimensional form using the following scalings : γnr/κ → γ,
Γsp/γnr → Γ , γpG → G, γe,h

esc/γnr → γe,h
esc , σe,h

capNQD/γnr →
σe,h

cap, γWL
nr /κ → γWL

nr , Λ/NQDγWL
nr → Λ, ΓWL

sp NQD/γWL
nr →

ΓWL
sp , D/aγWL

nr → D and Beh,heNQD/γnr → Beh,he. The

WL carrier population N e,h
WL has been rescaled to the total

QD density NQD.
With these rescalings eq.s (9) for electrons and holes, and

eq.s (10) for the WL become:
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Equations (18) for the electrons and holes and (19) for the
WL with eq. (16) for the field are the final equations to study.

3 Numerical results

3.1 Steady-state and stability analysis

In the limit of a pure optical generation of carriers (passive
configuration of the system) provided by the injected beam,
and neglecting the QD-WL interactions (r.h.s of (5,6) set to
zero), we remark that it is possible to consistently reduce the
present model to our previous two-level model (TLM) dis-
cussed in [1] by setting ne(ω)+nh(ω) = 2n (i.e. a two-level
system in the excited state contributes to both an electron
and a hole so that the TLM bistability parameter CTLM is
twice our present C parameter). Rewriting our model with the
above-mentioned simplifying assumptions, it is possible to
recast it to the two-level, inhomogeneously broadened model,
thus assessing the consistency of our approach. Reintroduc-
ing the QD-WL interaction terms in the absence of the pump
(Λ = 0), we have evaluated the role of the Auger effect and
radiative recombination. The steady-state values of the field
and the electron and holes densities are basically independent
of these terms. It can be understood, as discussed in the pre-
vious section, in terms of the moderate carrier density in the
WL and the QD. On the contrary, the stationary curves and
the domains of modulational instability are more significantly
influenced by the QD-WL relaxation mechanisms (γe,h

esc and
σe,h

cap terms). We will study both the focusing and defocusing
regimes. We note here that a negative or a positive value of
∆i is loosely referred to as "focusing" or "defocusing" re-
spectively in the sense that most of the classes of QD lie on
the focusing or defocusing side of the injected frequency.

We tried to keep as close as possible to the regimes stud-
ied in [1], while compromising for the most promising in-
dications for stable solitonic branches. We thus considered

Figure 1 Homogeneous steady state curves obtained via a sweep
process for the focusing parameter set (see text) and various com-
binations of the escape rates γe

esc/γh

esc corresponding to the good,
intermediate and poor confinement cases. The black S-curve refers
to the TLM for θ = −3, ∆i = −1, γ = 15, Γ = 60, CTLM = 20.

the following set of parameters: for the focusing one σcap =
500,θ = −3, ∆i = −1, γ = 15, Γ = 60, C = 20, Bhe,eh =
500, Γsp = 2.5, D = 0.41, Λpump = 0. For the defocus-
ing regime parameters are as for the previous case except for
∆i = 0.5, θ = −2 and C = 35. The choice of the values of
C will be clarified later. We studied three physical situations
corresponding to a good carrier confinement inside the QD
(γe

esc = γh
esc = 0.01), a poor one (γe

esc = γh
esc = 100), and

finally an intermediate situation where the hole confinement
is weaker than that of the electrons because of an unbalanced
band-offset ratio (γh

esc = 100, γe
esc = 0.01). By inspecting

the steady state curves reported in fig.(1) we interpret the
effect of the different escape/capture rates on the nonlinear
medium response as follows: an increased escape rate, corre-
sponding to a reduced contribution to the QD optical suscep-
tibility, shifts the hysteresis cycle towards higher values for
the input intensity, and yields lower intracavity intensities. On
the contrary, lower escape rates bring the stationary response
of the system closer to the case of Ref. [1] where the WL was
not accounted for. Although not discussed here, in the details
of the simulations, similar considerations hold for the vari-
ation of the capture rates. We also performed some numeri-
cal simulations in the intermediate confinement regime with
different values of the Beh,he coefficients. The characteristic
curves of the system steady-state response are indistinguish-
able with Bhe = 500 and Beh = 1000, 500, 50, 0. The sets
of parameters Bhe = 0 and Beh = 0, 1000 leads also to near
identical results too. Both results are however close because
Auger processes are perturbative in this model, since the WL
populations are low. We have nevertheless chosen the param-
eters Bhe,eh = 500 since it leads to a somewhat higher bista-
bility range while applying to a wide range of Beh values too.

The steady-state curves of fig.1 were obtained by two dif-
ferent numerical approaches : by integrating our rate equa-
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Figure 2 Focusing regime. PWI and MI boundaries vs C in the
good (a) and poor (b) confinements cases.

Figure 3 PWI and MI boundaries vs. C in the intermediate confine-
ment case for the focusing (a) and defocusing (b) set of parameters
letting C vary. The vertical line corresponds to the specific values of
C that are chosen for the pattern formation analysis. The intersec-
tion of this line with the MI and PWI boundaries make it possible to
infer the unstable portion of the homogeneous curve.

tions, cancelling Laplacian terms, or by using the intracav-
ity intensity as a dummy parameter. The two methods are in
perfect agreement and also provided indications on the input
field variation timescale to produce an acceptable adiabatic
sweep of the field dynamics. In all the subsequent figures we
rely on this second method to reproduce, when necessary, the
steady state homogeneous curves. The linear stability anal-
ysis cannot be obtained algebraically and thus a simple ex-
pression for the Turing instability boundaries cannot be de-
rived. Nonetheless an analysis of the instabilities can be per-
formed in a numerical way. The search for plane wave insta-
bilities (PWI), i.e. instabilities against a plane homogeneous
perturbation, is quite straightforward since it consists in find-
ing the region of negative slope in the homogeneous steady
state curve. In order to study the modulational instabilities
(MI) caused by transversely modulated perturbations we rely
on the direct numerical simulations of the full equations (i.e.
with the diffraction and diffusion operators). The simulations
were performed adopting only one transverse dimension in-
stead of two, since it is known (and we anyway cross-checked
our evidences) that, while the patterns emerging at steady-
state from a MI as well as their stability scheme are obvi-
ously influenced by the spatial dimensionality, the instability
boundaries are independent of the Laplacian dimensions and
only depend on the modulus of the transverse wavevector.

In fig.2 and 3, we plot the values of |ES | corresponding
to MI and PWI boundaries for different values of C in the
focusing and defocusing regimes.

The role played by the escape rates of electrons and holes
is illustrated in fig.2 by the dependence of the critical C pa-
rameter for MI and PWI. Low escape rates tend to strengthen
the non-linear interaction and this determines a bistable be-
havior for values of C down to 10. This case is also very
close, as expected, to the TLM (fig.4(a) of[1]) because both
electrons and holes last long in their excited states and the
whole system is indeed similar to a TLM. The quantitative
comparison is satisfactory provided that we recall that CTLM =
2C. On the contrary for the poor confinement case, bistabil-
ity starts at C = 13. In both cases the lower branch of the
bistable curve is stable and a consistent portion of the up-
per branch is unstable versus modulated perturbations. In the
slightly defocusing regime with ∆i = 0.5 and θ = −2, we
have observed an opposite behavior with respect to the fo-
cusing regime. The good confinement case is very similar to
the TLM results in fig.4(b) of [1] and the onset of bistabil-
ity is for C > 45. By contrast, for the intermediate and poor
confinement cases the onset of bistability is for C > 20. By
inspecting fig.3(b) we see that, when the system is bistable, a
fairly large portion of the upper homogeneous branch is mod-
ulationally unstable, and for C > 30 the whole lower branch
is basically stable. This behavior is quite different from the
defocusing regime of the TLM (see fig. 4(b) in [1]) where it
appeared that even for CTLM ≤ 100, a considerable portion
of the lower branch was affected by the MI. The inclusion
of QD-WL interactions seems to stabilize the lower homoge-
neous branch, possibly via the phenomenon of carrier diffu-
sion in the WL.

In order to appreciate the new features that emerge when
considering QD-WL interactions, we consider for both the fo-
cusing and defocusing regimes the intermediate confinement
case (γe

esc = 0.01,γh
esc = 100). On the basis of previous

studies on cavity solitons, we are aware of some necessary
or favorable conditions for the existence of cavity solitons. In
particular, a bistable homogeneous curve and an MI affect-
ing a large portion of the upper branch are highly desirable to
obtain stable cavity solitons. In addition, when the stationary
curve is bistable, stability of the lower branch is a necessary
condition. In the following we will meet these conditions by
a proper choice of the bistability parameter C both for the
focusing and defocusing regime.

4 Patterns and Cavity solitons: simulations

The dynamical equations have been numerically integrated
by means of a split-step method with periodic boundary con-
ditions. All the integrals have been calculated by discretizing
the spectral distribution of ne and nh in a suitable partition.

The pattern zoology depends on the regime, focusing or
defocusing, considered. We studied the branches of patterns
emerging from the MI and followed the changes thereof. We
identified the branches of stable cavity solitons (CS) check-
ing not only their long-term stability, but also their indepen-
dence/addressability in the sense that they were written and
erased by the pulse addressing technique [27].



Microscopic model ... 7

Figure 4 Focusing Regime. Steady state curve of the homogeneous
solutions and results of numerical simulations of the full equations
in the intermediate confinement regime. Patterns are indicated by
different symbols whose ordinate corresponds to the maximum in-
tracavity field amplitude in the pattern.

4.1 Focusing regime

In fig.3(a) the PWI and MI boundaries as function of C are
shown, and in fig.4 we report the bistability curve with a com-
plete characterization of patterns arising as self-organized struc-
tures and of CS. Honeycomb patterns are met subcritically
beyond the onset of the MI on the upper branch of the ho-
mogeneous curve; they exist for values of the input field am-
plitude in the range 35 - 42. Decreasing the input field, hon-
eycomb destabilize in favour of roll patterns. They exist for
a sizable range of the input field amplitude and evolve to en-
sembles of localized structures when the input field amplitude
is decreased below 31. Stable CS are found from 25.5 up to
the value of the input field corresponding to the lower homo-
geneous branch turning point (see vertical line in fig.4: this is
a general feature of CS since they need a stable lower branch
on which sit. The patterns observed are qualitatively compa-
rable with those predicted in other nonlinear resonators and
their general scheme of evolution and competition is similar
to previous studies [27,31].

4.2 Defocusing regime

In contrast to what is usually observed, the defocusing regime
(see fig.5) does not seem to be less favourable than the fo-
cusing one to the occurrence of CS, at least for our parame-
ter choice. With respect to the focusing case on fig.4 there is
a shift of the viable/interesting regimes towards higher field
values but on the overall the pattern branches are quite sim-
ilar. This is an indication that for the defocusing regime one
can still expect stable structures and CS. Indeed with the choice
∆i = 0.5, which corresponds to a slight defocusing effect,
the absorptive behavior dominates over the dispersive one

Figure 5 Defocusing Regime. Steady state curve of the homoge-
neous solutions and results of numerical simulations of the full equa-
tions in the intermediate confinement regime. Patterns are indicated
by different symbols whose ordinate corresponds to the maximum
intracavity field amplitude in the pattern.

and this, as it will become evident in the pattern morphol-
ogy, counterbalance the overall defocusing effect. The verti-
cal line reported in fig.3(b) allows us to identify the values
of the intracavity field that correspond to the unstable por-
tion of the homogeneous steady state curve reported in fig.5.
We report also a characterization of patterns and CS. Here we
find again honeycombs that subcritically emerge beyond the
onset of MI on the upper homogeneous branch. However, at
difference from the focusing regime, their stabilization is not
complete over the entire transverse plane, but is characterised
by the presence of persistent defects. By lowering the input
field these defects tend to alter the whole correlation among
the elementary cells of the patterns, and for input field am-
plitude lower than 58.5 the self organized honeycomb pattern
loose stability in favour of irregular, transverse filaments. Fil-
aments are not stable patterns but they endlessly move in the
transverse plane: eventually for input amplitude lower than
53 they fragment in multiple ensembles of CS.

We have observed that everywhere such spontaneously
organised CS are stable, we could also independently address
and switch on/off CS by means of narrow Gaussian pulses,
superimposed to the homogeneous background, centered at
the point at which we want to create or annihilate the CS.
The CS stable branch extends in the range 46.5 - 60 of the
input field amplitude. We note that this range of existence
is broader than that found for the focusing regime. So, both
regimes might in principle be adopted for an experimental
search for CS in such systems.

5 Conclusion

In this paper, we have developed an extended model for the
description of the optical response of a semiconductor QD
medium in a cavity. This model complements the previously
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studied effects of inhomogeneous broadening (a specific fea-
ture reflecting the fluctuations of the QD size) with the micro-
scopic mechanisms coupling the QD itself with the thin quan-
tum well on which it sits such as thermal capture and emis-
sion, and Auger scattering. We considered regimes of mod-
erate coherent optical excitation, where we have been able to
properly calculate the optical response and confirm the abil-
ity of such a material system to exhibit focusing as well as
defocusing nonlinearities, depending on the spectral detun-
ing of light with respect to the inhomogeneous line center.
We have applied this model to the analysis of self-organizing
optical properties such as periodic pattern and cavity soliton
formation. The conditions for the onset of MI and new bi-
furcated branches clearly express the favourable character of
focusing nonlinearities on assisting the absorption saturation
mechanisms in this process, while denoting that still accept-
able conditions can be found in the moderately defocusing
case. We showed that escape processes between the WL and
the QD affect only moderately the thresholds and the inten-
sities needed for CS formation. This result is encouraging
in view of practical implementations of QD in high finesse
cavities for pattern and CS formation in the focusing regime.
More unexpectedly, the defocusing regime shows somewhat
more favourable than in [1] to the stable appearance of CS
through the stabilization of the lower branch. This effect can
be attributed to the presence of a small carrier diffusion medi-
ated by the WL between the QD, which is known to improve
the stability range of CS[27]. Our model can also describe a
pumped QD medium with, if needed, additional Auger mech-
anisms corresponding to higher excitation densities, although
this study is left to future work.
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