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The forecasting of high-dimensional, spatiotemporal nonlinear systems has made tremendous progress
with the advent of model-free machine learning techniques. However, in real systems it is not always
possible to have all the information needed; only partial information is available for learning and
forecasting. This can be due to insufficient temporal or spatial samplings, to inaccessible variables, or to
noisy training data. Here, we show that it is nevertheless possible to forecast extreme event occurrences in
incomplete experimental recordings from a spatiotemporally chaotic microcavity laser using reservoir
computing. Selecting regions of maximum transfer entropy, we show that it is possible to get higher
forecasting accuracy using nonlocal data vs local data, thus allowing greater warning times of at least twice
the time horizon predicted from the nonlinear local Lyapunov exponent.
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The prediction of extreme event (EE) occurrences, while
having potentially a large impact in many fields of science
and everyday life, remains a challenge, especially in large
and complex spatiotemporal systems [1–9]. EEs, which are
rare and intense amplitude phenomena—as compared to
the long-time average of an observable in a given system
[10]—have been found in many types of systems [11],
either natural or in laboratory experiments. In the latter
case, optical systems have played a great role because of the
analogy between oceanic rogue waves and optical pulse
propagation in nonlinear optical fibers [12,13], allowing
one to generate and study these EEs with a large statistics
and in a controlled environment. EEs have also been found
in nonlinear optical dissipative systems displaying chaos
[14–18] or spatiotemporal chaos [19–21]. Likewise, model-
free prediction of low- [22–25] and high-dimensional
[26–28] chaotic time series have been made possible thanks
to the advent of machine learning techniques. However,
they usually require the precise knowledge of the whole
spatiotemporal history of a dynamical field, which is often
impossible in real situations where only a part of the
dynamics is observable while some dynamical variables
remain hidden and cannot be recorded. When a dynamical
variable is observed and used to predict the outcome of
another variable, the concept of cross-prediction has been
introduced and tested [29,30]. The application of model-
free techniques is more challenging when dealing with
experimental and natural data [31], where the resolution of
the measurements in time and space is limited. Recent
results have been obtained in this area for the prediction of
rogue solitons in supercontinuum generation in an optical

fiber [32,33] and the space-time localization of extreme
wind speeds in the North Atlantic ocean [8]. In Ref. [33],
the system is purely temporal and a spatiotemporal map
is obtained by a pseudo-space reconstruction. Precursors
identified in a different location of the reconstructed
pseudo-space therefore belong to the past of the system’s
evolution, not to a genuine different spatial location. In
Ref. [8], the full spatiotemporal field is recorded and used
for the forecast, thanks to the relatively slow timescale of
the system’s evolution.
In this Letter, we use a model-free reservoir computing

approach for the prediction of EE occurrences with exper-
imental data from a spatiotemporal chaotic broad-area laser
[20], where only partial information of the past spatiotem-
poral field is known. The only accessible observable is the
laser intensity (not the laser material dynamics), and the
dynamics can only be known accurately and simultaneously
at two given locations in space. This simulates the common
situation in practice where the spatiotemporal field is only
scarcely sampled in space. We identify the spatial locations
of potential precursors using an information theoretic mea-
sure, namely transfer entropy [34]. In contrast to Ref. [33],
where the precursors have a size of the same order of
magnitude as the one of the extreme pulses, here the
precursors cannot be identified reliably but aremostly hidden
in the system’s dynamical fluctuations and in the detection
noise. A classification task is performed using reservoir
computing to identify EEs in advance, using local and
nonlocal information. We compare the prediction results
and identify regimes where the nonlocal, cross-prediction
task yields better prediction accuracy than the local task.
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We investigate a quasi-1D broad-area microcavity laser
with integrated saturable absorber, which has been shown,
both experimentally and numerically, to display spatiotem-
poral chaos and EEs [20,35]. The observed spatiotemporal
chaos results from a chaotic alternation of amplitude and
phase turbulence phenomena [36]. The microcavity laser
pumped area is delimited by a clear aperture of 10 × 80 μm2

and emits at λc ≃ 980 nm. Transverse spatial coupling in the
microresonator is obtained through light diffraction with a
diffraction length wd ≃ 7.4 μm [20]. The detailed optical
setup is described in Ref. [20] and recalled in the
Supplemental Material (SM) for completeness. This system
has the advantage of having fast timescales, on the order of
hundreds of picoseconds, thus facilitating the sampling of a
large number of low probability events in a single exper-
imental run. EEs are qualified using the standard definitions
used in hydrodynamics, where these phenomena are coined
“rogue waves” [11].
The dynamics recorded at the center of the laser [see

Fig. 1(a)] displays large amplitude fluctuations [Figs. 1(b),
1(d), and 1(e)]. These fluctuations of height H (defined as

the maximum between the amplitudes measured at the left
and right sides of the pulse) can be classified into two
classes: extreme events (EE) or nonextreme events (NE).
The classification criteria for EEs is H ≥ 2Hs, where Hs,
the significant height, is simply the average of the height
of the events in the highest tercile. For technical reasons, it
is not possible to access the evolution of the whole section
of the laser with the required detection bandwidth. Only
partial information is available—namely, we detect the
simultaneous evolution in two different points, one fixed
located at the center of the laser ICðtÞ ¼ IðxC; tÞ, and one
mobile across the transverse section IMðtÞ ¼ IðxM; tÞ. In
Fig. 1(b), the intensity of EEs simultaneously measured by
the two photodetectors at the same location displays
correlated timetraces. The average time trace of EEs shows
some oscillations around the peak value at time ¼ 0 that
quickly dampen away from it, evidencing a typical tem-
poral pattern for EEs. In Fig. 1(c) by comparison, NEs
are completely uncorrelated, which results in a very flat
average time trace. Away from the correlation width of an
EE, atM1, an EE recorded in C is accompanied by no clear
sign in the time trace at M2, which displays a dynamics
very similar to the one recorded for a NE in Fig. 1(c). By
contrast, the average signal recorded atM ¼ M2 [Fig. 1(d)]
shows a small fluctuation for −1.5 ≤ t ≤ −0.5 ns that may
point to the presence of a precursor. However, the precursor
identification is rendered difficult since the signal fluctua-
tions are large and on the same order of magnitude as the
signal itself, as can be seen on the nonaveraged timetrace.
The identification of potential precursors can be made
easier using the tool of transfer entropy described below.
The dynamical complexity of the dataset can be estimated

from the Lyapunov spectra computed for the individual local
recordings IMðtÞ. From these, the largest Lyapunov exponent
λM can be extracted, giving access to a global, mean
maximum prediction time τp ≃ ð1=λMÞ lnðΔ=δ0Þ [37,38],
with δ0 the initial perturbation and Δ the resolution of the
measurement. The mean Kaplan-Yorke dimension DKY and
fractal dimension Df of the attractor are, respectively,
hDKYi ≃ 11 and hDfi ≃ 7.1 [Fig. 2(a)], which are consistent
with a high-dimensional chaos. A more precise estimate of
the prediction time horizon is given using the rate of growth
of initial error rate Φ computed in Fig. 2, which can be
extracted from the nonlinear local Lyapunov exponent [38]
(see SM [39]). The prediction horizon time can be defined as
the time at which logðΦÞ reaches 90% of its saturation value
and is of the order of 0.47 ns here. Using side results
(see SM), we can also estimate δ0 ≃ 3 × 10−4 and, assuming
Δ ≃ 5 × 10−3, which corresponds to a SNR of 1, and
extracting the mean maximum Lyapunov exponent from
Fig. 2 hλMi ¼ 7.6 ns−1, we get a mean maximum prediction
time τp ¼ 0.37 ns. This time is slightly smaller than the time
obtained from logðΦÞ, as expected, but is still larger than the
Lyapunov timeusually considered as a timehorizon indicator
τL ¼ hλMi−1 ¼ 0.13 ns.Recent results showed thatmachine

(a)

(b) (c)

(d) (e)

FIG. 1. (a) Microlaser near-field image above lasing threshold.
(b)–(e) Simultaneous recording of scaled intensities at C (fixed
photodetector, upper) and M (mobile photodetector, lower) for
specific events at C (placed at t ¼ 0): an EE is present (b),(d),(e)
or not present (c) atC. The photodetector is located at xM ¼ 0 μm
in (b), xM2

¼ þ12.3 μm in (d), and xM1
¼ −13.8 μm in (e). Red

and black lines: average timetraces over the ensemble of EE or
NE and associated standard deviations (orange and light blue
shaded areas). Dark red: largest EE’s timetrace, in (b),(d),(e)
[respectively, single random NE in (c)] recorded at C with the
simultaneous timetrace recorded at M (light blue). Red dashed
line: EE threshold 2 ×Hs (to be compared to the pulse height H
from the trough to peak, not to the peak value). Yellow shaded
area in (e): information used for the prediction of an event at
t ¼ 0, with history time τh and warning time τw.
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learning aided model-free predictions of high-dimensional
chaotic systems was possible up to about 6 Lyapunov times
[26,29,47–49].
Early warning signs of EEs, also called precursors,

have been considered in many previous works (e.g., in
[1,6,50]), including in low-dimensional optical systems
[51–54]. To identify potential regions of precursors,
we consider transfer entropy [34], similarly as in [33],
which measures the information transfer between two
signals. It is more robust than, e.g., a simple cross-
correlation since it uses conditional probabilities instead
of correlations.
We introduce the two-dimensional effective transfer

entropy Teff
M→CðxM; τwÞ (see SM [39]), which measures

the information gained at point C (in bits) from the
knowledge of a history of duration τh in the past at M
[see Fig. 1(e)], with τw parameterizing the time delay in the
past. It is obtained by subtracting to the transfer entropy
TM→C the transfer entropy for surrogate data inM, allowing
comparison between transfer entropies computed using
different τh. Teff

M→CðxM; τwÞ is calculated and plotted in
Fig. 3(a) for a history of size τh ¼ 0.050 ns. It displays
three regions of interest. A large central lobe centered
around xM ≃ xC, which corresponds to causal information
in the immediate spatiotemporal surrounding of the EE, and
two disconnected regions almost symmetric about the
temporal axis, which we identify as the location of potential
precursors (around P1 and P2). It is clearly seen that EEs
extend over a finite length of 10 μmwidth, as already noted
in Ref. [20]. At lags around τw ¼ 5Δt ¼ 0.25 ns, there is a
net transfer of information to the center of the laser at
τw ¼ 0. This corresponds to the immediate warning signal
of the EE formation. More importantly, there are discon-
nected regions around P1 and P2 at delay times τw ≃ 0.9 ns
where there is a net positive transfer of information outside
of the initial correlation length of the system. In the
following, we are going to use this knowledge for a

model-free prediction of the occurrence of EEs given the
past dynamical information.
A dataset is built after identifying events times tE of

intensity maxima at C and recording the signal at M
for a duration τh corresponding to m samples, i.e., from
½tE − τw − τh; tE − τw�, τw being the warning time [see
Fig. 1(e)]. Events at C are labeled as EE or NE. Since
EEs are rare by definition, a balanced dataset is built by
retaining all the N EEs and choosing an equal number of
NEs at random. This allows us to use a standard metric
for the loss function [7]. The dataset therefore consists of
2 × N timetraces associated to labels that identify their
categories, 70% of which is used as training data and 30%
as testing data. The prediction task is carried out using
reservoir computing (RC). RC has been used for prediction
on various low- and high-dimensional dynamical systems
[24,26,55–57]. It is particularly interesting as reservoirs are
themselves dynamical systems, making them ideal candi-
dates to map other dynamical systems. While we have
tested other machine learning algorithms (K-nearest neigh-
bors, long-short term memory, logistic regression), none of
them showed a significant superiority and RC happened to
be the one with the overall best performance [58]. The
reservoir generation and update follow the standard pro-
cedure detailed in the SM. It comprises N ¼ 50 nodes each
with a hyperbolic tangent activation function and is
initialized by a null state. Its parameters were optimized
thanks to a hyperoptimization routine. At the end of the
input sequence, the state of the reservoir nodes is stored
forming an output vector of length N. Thus, an input time
series of m samples is converted into a vector of at most N
values, which is a representation of the input data. A
logistic classifier assigning a class EE or NE is then trained
on all the training time sequences. The forecasting accuracy

(a) (b)

FIG. 2. (a) Largest Lyapunov exponent λM ¼ maxðλÞ and
Kaplan-Yorke dimension DKY of the timetraces versus recording
position. (b) Initial error growth rate for the laser intensity versus
time computed at C for both photodetector recordings. The
extracted prediction time horizon (see text) is 0.47 ns.

(a) (b)

FIG. 3. Effective transfer entropy Teff
M→C as a function of xM and

delay τw for τh ¼ 1; Δt ¼ 0.050 ns and (b) atM2 for τh ¼ 0.050,
0.250, 0.500 ns. P1 and P2 locate the main precursor regions in
the spatiotemporal diagram. Teff

M→C is smoothed by a small
Gaussian kernel (see SM for the original data).
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of an EE at C for a history τh ¼ 1.75 ns versus the warning
time τw is shown in Fig. 4(a). It is displayed for different
training data: using the local information at C, or the
nonlocal data atM1 or M2. Note that the accuracy does not
depend significantly on the history length after a certain
length is reached (see SM). In the first case, an accuracy
close to 1 is obtained for small warning times, since this
forecasting task is linear and simple. As τw increases, the
forecasting accuracy also decreases almost monotonically
towards 0.5, i.e., to the absence of forecasting power. The
same behavior occurs using nonlocal training data, though
with important differences betweenM1 andM2. AtM1, the
forecasting accuracy is always low since there is almost no
information present at this location, as can be checked in
Fig. 3. The forecasting accuracy using nonlocal data atM2,
on the contrary, is close to 0.8 for small warning times and
decreases steadily until about 1.2 ns where the accuracy
drops considerably and is on par with the one computed
using data at M1. However, most interestingly, there is a
window of forecasting where it is possible to obtain slightly
higher accuracy with the nonlocal data at M2 rather than
using the local data at C. This illustrates the importance of
analyzing the transfer entropy pattern in Fig. 3(a), which
can allow one to improve the prediction accuracy by
evidencing the spatiotemporal location of potential pre-
cursors. The forecasting accuracy at M2 drops at τw ≃ 1,
which is more than twice the time horizon inferred
previously and also about 7.5 times larger than the
Lyapunov time. This corresponds also to the time at which
the logistic regression alone gives comparable results with
the RC approach. It also relates to the drop observed for the
effective transfer entropy computed in Fig. 3(b) for differ-
ent warning times. This means that no useful further
information can be extracted from the input time series
past this timescale. For smaller warning times, the reservoir
is able to improve slightly the forecasting accuracy with
respect to a simpler logistic regression approach. By
contrast when τw ≫ 1, very little information can be
extracted for the prediction as evidenced the low transfer
entropy computed.
In Figs. 4(b) and 4(c), we analyze how our model-free

approach classifies EEs depending on their actual heights.
As shown on the testing dataset histogram of heights
[Fig. 4(b)], despite the fact that the training sets have been
balanced, large EEs are still far less frequent than smaller
ones and will therefore participate less to the training. The
probability PðEvent ¼ EEjHÞ of forecasting as an EE an
event of actual height H at C, given the knowledge of a
history of nonlocal data atM2 characterized with τw ¼ 1 ns
and τh ¼ 1.75 ns, is shown in Fig. 4(c). In the perfect case,
the probability would evaluate to 1 above 2Hs and zero
below. It increases with H and generally reaches 1 for
the largest EE heights’ values, while the complementary
probability PðEvent ¼ NEjHÞ goes to zero (green and
yellow histograms, respectively). This trend is true for
the results shown in Figs. 4(b) and 4(c), obtained for two

different training sets, and shows that while large EEs are
less frequent in the training dataset, their prediction
accuracy increases with their height, resulting in a usually
very good prediction for the largest EEs. We note, however,
that some statistical fluctuations can remain in the fore-
casting results, as can be seen on the far right of Fig. 4(c),
where an isolated event has been misclassified in one
realization of the train and test datasets’ partitions.
In conclusion, we have shown that a model-free approach

based on reservoir computing can successfully classify, with
a reasonable accuracy, the occurrence of EEs in a dataset of
an experimental system displaying high-dimensional spa-
tiotemporal chaos from the partial knowledge of the history
of the spatiotemporal field. Using the transfer entropy
concept, we identify specific spatiotemporal regions with
high information flowpointing to potential precursors,which
in our specific case are hidden in the dynamical fluctuations
or detection noise. We find that while the prediction using
the local information gives generally the best accuracy,
forecasting from the nonlocal precursor region can yield

(a)

(b)

(c)

FIG. 4. (a) Mean EE forecasting accuracy at C with τh ¼
1.75 ns versus the warning time τw, using either local (at C) or
nonlocal (at M1 or M2) data as input. The mean and standard
deviation are computed with 10 different realizations of the
reservoir. Thin line: nonlocal forecasting at M2 using logistic
regression alone. (b) Histogram of the testing dataset heights’
distribution (blue, NE; red, EE events). (c) Classification prob-
ability as an EE (green) or a NE (complementary, orange) of an
event of actual height H occurring τw ¼ 1 ns in the future at C
from the knowledge of a history of τh ¼ 1.75 ns duration of the
nonlocal data at M2. Two different realizations of the testing
dataset are illustrated (plain and empty histograms).

PHYSICAL REVIEW LETTERS 130, 223801 (2023)

223801-4



comparable to slightly higher accuracy in a window of large
warning times. The forecasting ability extends to at least
twice the time horizon computed from the nonlinear local
Lyapunov exponent of the system and about 7.5 times the
Lyapunov time before dropping to a random prediction. We
believe these results pave the way to extreme forecasting
in other areas of science, with applications to many natural
systems, including in geoscience for the detection of earth-
quakes where the precursors are unknown and the spatial
detection is incomplete.
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