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We present experimental measurements concerning the response of an excitable micropillar laser with saturable
absorber to incoherent as well as coherent perturbations. The excitable response is similar to the behavior of
spiking neurons but with much faster time scales. It is accompanied by a subnanosecond nonlinear delay that is
measured for different bias pump values. This mechanism provides a natural scheme for encoding the strength
of an ultrafast stimulus in the response delay of excitable spikes (temporal coding). Moreover, we demonstrate
coherent and incoherent perturbations techniques applied to the micropillar with perturbation thresholds in the
range of a few femtojoules. Responses to coherent perturbations assess the cascadability of the system. We discuss
the physical origin of the responses to single and double perturbations with the help of numerical simulations of
the Yamada model and, in particular, unveil possibilities to control the relative refractory period that we recently
evidenced in this system. Experimental measurements are compared to both numerical simulations of the Yamada
model and analytic expressions obtained in the framework of singular perturbation techniques. This system is thus
a good candidate to perform photonic spike processing tasks in the framework of novel neuroinspired computing
systems.
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I. INTRODUCTION

The generation of short optical pulses is a key ingredient for
optical signal processing and signal transmission applications.
Interestingly, self-pulsing lasers with saturable absorbers are
usually able to operate in the so-called excitable regime
[1–4]. This regime occurs when the laser is biased below
the self-pulsing laser threshold and is characterized by an
all-or-none type of response to an input perturbation. When
the perturbation is below a certain threshold (the excitable
threshold), no pulse is emitted, whereas when it is greater than
this threshold, a calibrated pulse is emitted. Semiconductor
lasers with saturable absorbers are known to behave as fast and
compact excitable systems [5] since the typical operating time
scales are given by the carrier recombination time, usually
a few hundreds of picoseconds. This regime may be useful
for traditional optical signal processing applications (e.g.,
logic gates [6]) as well as to build networks for photonics
neuromimetic and spike processing operations [7,8] such as
spiking pattern recognition [9], self-regenerative memories
[10], and coincidence detection [11–13]. In a recent work
[14], we demonstrated a fast excitable dynamics with response
times of the order of 200 ps in a micropillar laser with
integrated saturable absorber and studied the absolute and
relative refractory periods. This behavior is analogous to the
one found in biological neurons but with time scales faster
by more than 6 orders of magnitude. The absolute refractory
period is the latency period after one excitable pulse has fired
in which it is not possible to trigger another pulse. Less known
in optics is the relative refractory period, i.e., the latency
period in which the system has not completely recovered
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its stationary state but can respond to an input perturbation,
though with a reduced response amplitude and with a higher
(dynamical) threshold. In biological neurons, this corresponds
to the repolarization and hyperpolarization phases of the action
potential generation. The characterization of these periods
is crucial for signal processing applications based, e.g., on
spike-time coding, or for the stable propagation of activity
pulses in spatially extended excitable systems [15]. We give
here a more detailed account on these results and we present
measurements concerning the timing behavior of the system
and its ability to respond to incoherent as well as coherent
perturbations. The excitable response is accompanied by a
nonlinear delay that is measured for different bias pumps.
This mechanism provides a natural scheme for excitable
spikes to encode the strength of the stimulus in a response
delay. Temporal coding based on relative spike latencies has
been successfully implemented in several neurocomputational
algorithms for vision processing and pattern recognition [16]
and has been demonstrated in the vision processing of retinal
ganglion cells [17]. It is thus a particularly important feature
of a neuromimetic system. We present experimental results on
spike latency in our system in Sec. II and discuss in Sec. III
the results in relation with numerical and analytical analysis
obtained with the Yamada model. In Sec. IV we analyze in
detail the relative refractory period and show numerically how,
by controlling the recombination rates of carriers in the system,
it is possible to modify the response of the micropillar as well
as the nature of the refractory period. Moreover, we propose a
physical explanation of this behavior in terms of a dynamical
excitable threshold. In Sec. V we experimentally demonstrate
the coherent perturbation technique on the micropillar and
compare its specific response to the one induced by incoherent
perturbations. Responses to coherent perturbations assess the
cascadability of the system, a key property for building
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networks of excitable units. They also display calibrated
response amplitudes that depend weakly on the perturbation
strength, in contrast to the incoherent perturbation case. We
discuss the physical origin of the peculiar kinds of responses
with the help of numerical simulations. Finally, in Sec. VI, we
conclude and bring perspectives of this work in the framework
of photonic neural processing.

II. SPIKE LATENCY

The excitable system under study is a micropillar laser with
intracavity saturable absorber emitting at 980 nm. The cavity
design is based on an original vertical cavity structure [18,19]
optimized for optical pumping around 800 nm and room-
temperature operation and integrating a saturable absorber
(SA) in the active zone. The active zone consists of two InGaAs
quantum wells for the gain section and one InGaAs quantum
well for the SA section. A 4-μm diameter micropillar is then
etched and the micropillar is further coated with a thick SiN
layer to prevent oxidization and to improve heat dissipation
[14]. The micropillar is pumped cw by a fiber-coupled array
of laser diodes and focused onto the sample with a microscope
objective. The dynamics is recorded with a 80-ps rise-time
avalanche photodiode, amplified by a 18-GHz bandwidth RF
amplifier and recorded by a 13-GHz oscilloscope. Optical
perturbation pulses, 80 ps in duration, are provided by a
mode-locked Ti:Sa laser operating at a repetition rate of
82 MHz whose output rate can be down-converted thanks to
an acousto-optic modulator.

The responses to short optical perturbations in the pump
window (∼800 nm) are shown in Fig. 1(a). They display
the typical behavior already reported in Ref. [14], i.e., a
sharp jump at the excitable threshold and an increase of
the excitable threshold for lower pump values. The excitable
threshold increase is accompanied with a reduction of the
height of the response step, until no more jump is visible
as the excitable regime disappears at the benefit of a gain
switching regime. These observations have been successfully
compared to numerical simulations of the Yamada model
with an excellent agreement in Ref. [14]. A dynamical delay
between the perturbation and the response occurrences is
measured and is plotted in Fig. 1(b). It is obtained by averaging
the response delays over 100 perturbation pulses. Its range
spans from about 1 ns close to threshold to less than 150 ps
away from the excitable threshold. For a given perturbation
strength, the delay increases with lower pump values. This
latency is exactly similar to the one observed in biological
systems [20], except obviously for the time scales at stake:
hundreds of picoseconds here versus milliseconds.

III. NUMERICAL MODELING

We can compare our results to numerical simulations based
on the Yamada model [21] with spontaneous emission [4,22].
This model has already shown important properties of the
dynamics of semiconductor lasers with SA, and in particular
the shape of the curve of excitable response versus perturbation
amplitude and its dependence on pumping [14]. It has also been
recently recognized [9] as being an optical analog to the leaky
integrate-and-fire neuron model in the limit of an infinitely fast

(a)

(b)

FIG. 1. Median of the response amplitude R (a) and median of the
pulse response delay (b) versus normalized perturbation energy P for
different bias pumps with respect to the self-pulsing pump threshold.
The perturbation and the response are normalized respectively to the
excitable threshold (P 99%

th ) and to the response at excitable threshold
(R99%

th ) for a bias pump P equal to 99% of the pump at the self-pulsing
threshold.

photon cavity lifetime, a model widely used in computational
neuroscience [23]. The model reads

İ = I (G − Q − 1) + βsp(G + η1)2

Ġ = b1[μ1 − G(1 + I )] (1)

Q̇ = b2[μ2 − Q(1 + sI )].

It consists of three coupled nonlinear ordinary differential
equations for the intracavity intensity I and the scaled excess
carrier densities with respect to transparency in the gain and
in the SA region G and Q. Other parameters are μ1, the gain
generated through pumping intensity; μ2, the nonsaturable
loss; s, the saturation parameter; βsp, the spontaneous emission
factor; and η1, the transparency offset of gain. Time is rescaled
to the cavity lifetime and b1,2 are the rescaled recombination
rates of carriers respectively in the gain and SA regions.
We take b1 = 0.001, b2 = 0.002, μ2 = 2, s = 10, η1 = 1.6,
βsp = 10−5 as parameters suitable for our semiconductor
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FIG. 2. (a) Response pulse delay τd from Yamada model with spontaneous emission (full line) versus incoherent perturbation initial
condition G0 for different pump values μ1 from μ1 = 2.8 to μ1 = −18.2 in steps of 1.5. (b) Numerical delay τd (circles) and analytical
expression τ ∗

d given by (2) for μ1 = 2.9 (dashed). The full line corresponds to a fit of the numerical delays (dashed orange line) with expression
(2). (c) Numerical maximum response pulse for μ1 = 2.9 (full line) and analytical approximation. In (b) and (c) βsp = 0 and I (0) = 0.01.

laser. In the absence of spontaneous emission (βsp = 0), the
system admits {I = 0} as an invariant manifold. Therefore,
any perturbation on the slow variables G or Q has no effect
and the only way to trigger an excitable pulse is to perturb the
laser intensity itself by injecting resonant light into the cavity
mode. In order to account for the experimental observations
where excitable pulses are produced following an excitation
at 800 nm on the gain carrier density, we have introduced a
spontaneous emission term βsp(G + η1)2 in the equation for
the intensity dynamics. Hence, the steady-state intensity below
threshold is not zero anymore and the system is sensitive to
perturbations on the pump. It was already shown in Ref. [14]
that the excitable threshold decreases linearly with increasing
bias pump μ1 at lowest order. This result is in good agreement
with the experimental observations. Here we analyze the delay
in the excitable response using the model of Eqs. (1) for
different bias pumps μ1. The results are shown in Fig. 2(a) and
reproduce qualitatively well the experimental observations on
Fig. 1(b). The delay τd measures the time difference between
the perturbation (considered instantaneous) and the time at
the maximum of the excitable response pulse. It diverges for
perturbations close to the excitable threshold and saturates for
large perturbations. It is also longer for lower bias pump values
μ1 and for identical perturbation strengths. The agreement
with the experimental data is particularly good for high
perturbations as expected. Indeed, the presence of noise in the
experiment triggers random events that are more likely to occur
for perturbations close to the excitable threshold [5]. Those
events tend to reduce the effective delay observed with respect
to the theoretical expectations. Moreover, this also explains
why average delays can be computed for perturbations even
below the excitable threshold in Fig. 1(b). The delay between
spikes for continuous input stimuli provides a natural coding
mechanism called temporal coding [24]. A suprathreshold
input stimulus generates a spike with a variable delay and
this delay depends on the strength of the input. This coding
scheme has been shown to be a plausible mechanism in the
visual cortex, as opposed to rate-based coding schemes where
the “instantaneous” spiking rate is considered [25].

Analytical expressions have been derived in Ref. [4] for
the excitable threshold and the spike latency in the case of
equal carrier recombination rates in the gain and in the SA
sections. In addition, only coherent perturbations have been

considered, i.e., perturbations on the intensity I . The same
analytical approach cannot be easily extended to the more
general case of arbitrary recombination rates b1 �= b2 and
of a perturbation on the gain carrier density G considered
here. We have developed another approach using asymptotic
methods based on the natural values of the parameters [26,27]
to solve this issue. In the case where both the bias pump μ1

and the perturbation G(0) ≡ G0 are close to the first laser
threshold μ1th = 1 + μ2, it is possible to obtain an analytical
expression for the spike latency. We use the same definition
for this delay as in Ref. [4], i.e., we consider τ ∗

d as the time
needed for the intensity to reach its minimum before growing
exponentially fast to large values. This definition of the spike
latency thus neglects the pulse duration itself and differs from
the one computed in the experiment but allows nevertheless
analytic insights. The onset of a successful pulse requires
that G0 > G0c ≡ 2μ1th − μ1 − √

2(b2μ2s − b1μ1th)I0, which
is slightly below 2μ1th − μ1 since I0 � 1. Note also that since
we imposed that μ1th is close to μ1, we recover the simple
observation that in order to trigger an excitable pulse we need
that the net gain G − Q − 1 reaches values close to zero [14].
Of physical interest is the asymptotic limit of the delay τ ∗

d

when G0 − G0c → 0+. It takes the form

τ ∗
d = π√

2(G0 − G0c)(2μ1th − μ1 − G0c)
, (2)

showing an inverse square-root dependence close to the critical
perturbation: τ ∗

d ∼ (G0 − G0c)−1/2. This is the typical scaling
law for a solution near a saddle point, as it is the case
here. Let us remember that τ ∗

d is the time for the intensity
to reach its minimum. It tells us that if G0 is sufficiently
close to G0c, there is a substantial period of time where the
intensity remains low before the onset of the large intensity
pulse. If G0 > 2μ1th − μ1, then our analysis shows that the
intensity grows exponentially immediately without exhibiting
a significant prepulse period. In Fig. 2(b), the spike latency τd

is computed numerically with μ1 = 2.9 from the full model
and is determined as the time the pulse reaches its maximum.
It is compared to the expression (2) for τ ∗

d valid for G0 close
to the critical gain G0c. The agreement is only qualitative. A
better agreement can be reached if one fits the numerically
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obtained values with the functional dependence

τd = τ0 + τ1√
G0 − G′ (3)

to account for the threshold mismatch between the numer-
ical value and the analytic estimate and the difference in the
latency definitions. The full line curve in Fig. 2(b) shows (3)
with the values τ0 = −7.98, τ1 = 17.71, and G′ = 2.98. The
agreement with the numerical values is much better, thus the
inverse square-root dependence is validated. The dotted curve
shows the delay τ ∗

d for lower bias pump μ1 = 2.8 and agrees
with previous observations on the fact that the delay increases
for lower bias for equal perturbation strengths.

IV. CONTROL OF THE RELATIVE REFRACTORY PERIOD

The existence of refractory periods is a key property of
excitable systems and is linked to the return of the excitable
system to its rest state after a spike has been triggered by
an adequate perturbation. In biological neurons, it is well
known that it is impossible to trigger an excitable response
immediately after an action potential spike has been fired, i.e.,
during the so-called absolute refractory period. In the regime
where a second perturbation occurs much later after the spike,
the system is again able to emit a response. However, there
is also an intermediate regime where the ability to trigger a
second response is strongly affected by the emission of the first,
and where the response has therefore a smaller amplitude. This
defines the relative refractory period. This phenomenon has
been recently evidenced in a micropillar laser with saturable
absorber [14]. The main result is reproduced in Fig. 3(a).

The excitable threshold increases with decreasing delay
between the two perturbations. This also demonstrates that,
contrary to a common belief, the excitable threshold is not
a fixed quantity [though the topology of the system of
Eqs. (1) remains the same] and depends on the history of
the system. This may have fundamental repercussions for
applications to neuromorphic processing of information. The
model consisting of Eqs. (1) was used to characterize double
pulse excitation responses and the result is shown in Figs. 3(b)–
3(d). The qualitative agreement between the model on Fig. 3(b)
and the experimental results on Fig. 3(a) is excellent. When
the second perturbation pulse impinges long after the first
excitable pulse has fired, the response is not affected and a
second excitable pulse is emitted. When this occurs earlier
in a delay such that the carriers did not have enough time to
relax to their steady-state values, the response level decreases
(relative refractory period) until being completely repressed
for a sufficiently small delay time (absolute refractory period).
Note also the disappearance of the discontinuous response
to the second perturbation, marking the fact that the system
is not excitable anymore in this domain. The response also
depends crucially on the respective gain and SA recombination
timescales. As can be seen from Figs. 3(b)–3(d), an active zone
containing gain and SA materials with equal recombination
times will have a relative refractory period such that the
sooner the second perturbation occurs, the more difficult it
is to trigger an excitable response [Fig. 3(c)]. For a slightly
faster SA medium [Fig. 3(b)], the excitable threshold first
increases with delay (<450 ps) and then decreases again

FIG. 3. (a): Experimental measurements of the amplitude of the
response R2 to a second perturbation pulse after an excitable response
has been triggered by a first perturbation pulse at t = 0 for different
delays between the two perturbations. The perturbation amplitude
P of the second pulse is scaled to the perturbation amplitude at
the excitable threshold Pth,∞ for the delay 1.51 ns for which the
system has almost completely recovered. [(b)–(d)] Same with the
model [Eqs. (1)] and parameters: (b) b1 = 0.001, b2 = 0.002; (c)
b1 = 0.001, b2 = 0.001; and (d) b1 = 0.0001, b2 = 0.001. In the
simulations, a first excitable response is triggered at t = 0 and is
followed by a second δ-like incoherent perturbation at a variable
delay τ . The perturbation is characterized by a gain carrier increase
G(τ+) ≡ G1 with G(τ−) ≡ Gτ . The pump parameter is μ1 = 2.8
and the other parameters are listed in the text.

for long delays (>450 ps). This case is qualitatively similar
to what was observed in the experiment [Fig. 3(a)]. In the
case of a very slow gain medium [Fig. 3(d)], the behavior
can be reversed: The excitable threshold is smaller for small
delays and then increases. This situation is not encountered in
standard neurophysiological models. While recovery always
occurs for long times, the amplitude of the response is always
smaller for small delays. The case b2/b1 � 1 is not considered
since it is not favorable to the excitable regime. In our
micropillar laser, we can control to some extent the ratio of
recombination rates by changing the temperature of the sample
that in turn changes the operating point: For a larger laser
threshold, spontaneous recombination of carriers accelerates
the gain recombination time and modifies the ratio.

The model also reveals the underlying physical mechanism
driving the system response. It shows that the response can
be understood simply in terms of the carrier dynamics in
the gain and SA zones in very similar terms to those of
the case of integrator neurons [28]. Indeed, the second pulse
acts as a probe for the gain and carrier dynamical evolution
and the system reacts in a manner similar to the static case:
Whether a second excitable pulse emission occurs depends on
the net gain R(t) = G(t) − Q(t) − 1 as illustrated in Fig. 4.
This figure shows different recovery dynamics of the net
gain R(t) after a first excitable pulse has been triggered by
a δ-like perturbation at time t = 0. The steady-state value of
R(t) is given by μ1/(1 + Iss) − μ2/(1 + sIss) − 1, with Iss

the steady-state intensity, and is slightly negative. For equal
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FIG. 4. Net gain R(t) = G(t) − Q(t) − 1 for the same set of
parameters as Fig. 3 but different gain and SA recombination rates
b1,2 and for an initial excitable pulse triggered at t = 0. Black vertical
thick lines materialize the perturbations on the gain for b1 = 0.001.

recombination times in both the gain and the SA sections, the
evolution of R(t) is monotonic and the net gain increases after
the excitable pulse has been triggered. Any perturbation on the
gain sent to the system will thus trigger a second excitable event
if the net gain becomes positive for a sufficiently long amount
of time. The excitable threshold will thus decrease for longer
delays. The case b2 = 0.002 is a mixed case since the net
gain first decreases and then increases, making the excitable
threshold increase for short delays and decrease for longer
delays. Finally, for a slow gain medium the excitable threshold
initially increases for increasing delays. This matches the
decreasing of the net gain and the behavior reverses when
the recovery of R(t) takes place as it starts increasing again
(for very long times not shown here).

V. RESPONSE TO COHERENT AND INCOHERENT
PERTURBATIONS

In the previous measurements we only considered pertur-
bations whose wavelength were around 800 nm, i.e., differed
from the cavity resonance wavelength. These perturbations are
called “incoherent” and their effect is to suddenly increase the
gain carrier density, described in the model by a kick in
the pump value μ1 in Eqs. (1). Since our system contains three
relevant physical variables (carrier densities in the SA and gain
regions and intracavity intensity, Q, G, and I , respectively)
it could be then perturbed using any of these variables. While
perturbations on Q alone is difficult in our setup since the
SA is integrated in the structure and, by design, immune to
the input pump [19], it is also possible to perturb the system
close to cavity resonance. This kind of perturbation is called
“coherent.” By fabrication and depending of the wafer used,
the cavity resonance wavelength is in the 980- to 990-nm
range. Coherent perturbations are important to demonstrate
cascadability of the system, a very important point if the output
of one micropillar is to be fed to several others (fan-out). It
is also the kind of perturbations generally used in models.
From an optical processing point of view [13], the possibility
to input incoherent perturbations is important for input-output
isolation. In this section we investigate the differences between
the two types of stimuli.

FIG. 5. Left panel: Response amplitude for a coherent pertur-
bation at λ = 980.47 nm and different bias pumping with respect
to the self-pulsing threshold PSP pumping value. The response and
perturbation amplitudes are scaled to their maximum value for
P/PSP = 94.3. Upper left panel: Excitable threshold dependence for
coherent perturbations versus bias pump.

While the excitable behavior is generally defined as produc-
ing a response whose amplitude is almost independent from the
perturbation that gave rise to it, the excitable response versus
perturbation amplitude in Fig. 1 exhibits a linear increase
after the sharp jump at the excitable threshold. However, for
similar experimental conditions a perturbation acting at cavity
resonance (or very close to it) at 980.47 nm will display a
marked plateau after the excitable threshold as can be seen
on Fig. 5. For different bias pump settings, it is possible
to control the excitable threshold as shown on Fig. 1(a).
Interestingly, it is shown here that an increase of the bias
pump will increase the excitable threshold, at difference with
the incoherent case. This is due to the temperature-induced, red
detuning of the cavity resonance with increasing pump. The
opposite (and “normal”) behavior can be observed for bias
pumpings below P/PSP = 94.3, as is seen in Fig. 5(b). The
behavior after the excitable threshold is then a characteristic
of the perturbation method. When the perturbation acts on the
gain section (incoherent perturbations), the trajectory followed
by the system in phase space slightly differs from the trajectory
followed in the case of a perturbation on the intensity. However,
it is important to note that in each case it is the homoclinic
loop that organizes the whole dynamics: There is always a
characteristic path followed by the response pulse. A more
general definition of the excitable behavior could therefore
be the existence of a characteristic, minimal path in phase
space that organizes the global dynamics such that there
exists a threshold for a small perturbation (smaller than the
characteristic size of the path) to trigger a larger excursion.

In order to analyze more deeply the impact of the perturba-
tion type on the trajectory in phase space, we have computed
the response of the system for different perturbations mixing
perturbations on the gain and on the intensity. More specifi-
cally, we have integrated Eqs. (1) with a bias pump μ1 = 1.5
and initial conditions {G,Q,I }(t = 0) = {G0,Q0 = μ2,I0}
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FIG. 6. Maximum intensity IM of the response pulse to a mixed perturbation characterized by initial conditions at 0+ for
{I,G,Q}:I0,G0,Q0 = μ2. Left: μ1 = 1.5. Right: Zoom for I0 small and G0 close to the threshold value. Parameters are the one given in
the text except βsp = 0. Dashed lines: Analytic formula for the excitable threshold Eq. (4). Sections of the surface are marked by black dotted
lines and shown in the side panels for G0 = 1.5, G0 = 3.5, I0 = 1, I0 = 40.

and plotted the result in Fig. 6. The lower-left corner represents
the set of all subthreshold perturbations [we consider here only
positive perturbations (G0 > μ1,I0 > 0)]. The excitable
threshold is materialized by an abrupt transition in the response
amplitude, which demonstrates the excitable character. In the
experimental results presented in Figs. 1 and 5, “coherent”
perturbations refer to those on the intensity alone {G0 = μ1,I0}
while “incoherent” perturbations refer to those on the gain
alone {G0,I0 = Iss}. Any other perturbation would then
correspond to a linear superposition of these two cases. Above
the excitable threshold, the peak intensity grows linearly for
perturbations with increasing incoherent part and is almost
constant for perturbations with increasing coherent part. Since
we chose βsp = 0, there is a singular vertical line of initial
conditions {I0 = 0}, which is under the excitable threshold
for any incoherent perturbation amplitude. For any small
intensity, however (G0,I0 > 0), the singularity disappears. For
G0 = μ1 corresponding to purely coherent perturbations, the
only steady-state point is the laser-off state and the system
is no longer excitable (the system is below the saddle-node
bifurcation point S in Fig. 2 of Ref. [4]), as is visible in Fig. 6.
Similarly, for I0 � 40, the system no longer exhibits an abrupt
transition for an increasing perturbation on gain but instead
displays a rather smooth transition, characteristic of a gain-
switching regime. This regime transition was experimentally
demonstrated in Ref. [14]. Note that the amplitude of the
response in the case of coherent perturbations depends also
on the bias pump μ1, while being almost insensitive to the
strength of the coherent perturbation amplitude: The response
is larger for larger pump intensities. It is possible to find an
analytical expression for the excitable threshold in the case of

a perturbation on the gain, arbitrary recombination rates in the
gain and in the SA, μ1 � μ1th and for βsp = 0 [27]. The critical
perturbation on the gain at the excitable threshold reads

G0c = μ1th

+
√

2b1(μ1th − μ1)

[
ln

(
Is

I0

)
− (Is − I0)

Is

]
, (4)

where

Is = μ1 − μ1th

μ1th − (b2/b1)μ2s
> 0 (5)

and I0 = I (0) � 1. Since μ1 < μ1th, the inequality Is > 0
requires that μ1th − (b2/b1)μ2s < 0, which corresponds to the
condition for a subcritical steady bifurcation at threshold only
if b2 = b1. If b2 �= b1, then (5) depends on the ratio b2/b1 and
results from the fact that we are dealing with a dynamical
phenomenon and not a steady state. The condition μ1th −
(b2/b1)μ2s < 0 is thus a necessary condition for excitability.
The result is plotted in Fig. 6. The agreement is good even
for a relatively large initial intensity value I0. Given the fact
that b1 � 1, it is clear that in first approximation the excitable
threshold is linearly controlled by the value of the bias pump
μ1 since G0c � μ1th � μ1.

Physically, the suprathreshold behavior of the excitable
response amplitude can be explained by the fact that in the
incoherent perturbation case, the perturbation acts on the gain
and therefore the gain increases just after the perturbation,
giving rise to an increased response, whereas for a coherent
perturbation the gain is not immediately affected by the
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perturbation. It is affected afterwards, through the nonlinear
dynamics, making the response amplitude rather independent
of the perturbation amplitude. This also explains why the
amplitude of the response differs for increasing coherent
perturbation amplitudes but fixed incoherent ones. On a more
theoretical level, the homoclinic bifurcation giving rise to the
excitable property necessitates a phase space of dimension
greater than two (three here), as compared to the dynamics of,
e.g., the saddle-node on invariant circle bifurcation that takes
place in one dimension and for which the excitable response
amplitude is necessarily clamped.

A more quantitative argument can be given by considering
the high-intensity limit of the set of Eqs. (1). In this limit the
equations read (with βsp = 0)

İ = (G − Q − 1)I

Ġ = −b1GI (6)

Q̇ = −b2sQI.

These equations are boundary layer (or inner layer) equa-
tions which must be solved with the matching conditions
b1I → I0, G → G0, and Q → μ2 as t → −∞. Dividing the
equation for Q by the one for G, one can integrate the system
that leads to Q = μ2(G/G0)m with m = sb2/b1 and G0 = μ1

for a coherent perturbation and G0 > μ1 for an incoherent
one. By reporting the result in the equation for I and dividing
by the equation for G, one can integrate the system to get
(with I0 � I )

I = 1

b1

{
ln

(
G

G0

)
− (G − G0) + μ2

m

[(
G

Go

)m

− 1

]}
. (7)

Just after the high-intensity pulse, the systems sets in
its saturated phase with I → 0, G → Ga , and Q → Qa .
Assuming Ga/G0 < 1 and since m is numerically large, we
find Ga � G0 exp(−G0). We are interested in the maximum
intensity which appears at G = GM and satisfying G −
μ2(G/G0)m = 1 or, since m is large, GM � 1. Inserting the
latter into (7), we obtain finally the maximum pulse intensity
IM as

IM � 1

b1

[
ln

(
1

G0

)
− (1 − G0) + μ2

m

]
. (8)

This expression tells us that for a coherent perturbation,
the maximum intensity reached by the excitable pulse does
not depend in first approximation on the coherent perturbation
since in that case G0 is always equal to μ1. On the contrary, for
a perturbation on the gain one has G0 > μ1, which obviously
depends on the perturbation strength and leads to a dependence
of IM on G0. A comparison of the analytic approximation (8)
and of the solution from the numerical simulation of the full
model is shown in Fig. 2(c). The agreement is very good.

Another interesting aspect for practical applications lies
in the perturbation energy necessary to elicit a response. For
the same micropillar illuminated by coherent and incoherent
perturbations, the excitable threshold energy for incoming
pulses on the micropillar is measured respectively to be 3.75 fJ
and 725 fJ. This is to be compared to the response pulse
energy at threshold which is of the order of 50 fJ. Since the

perturbation pulse is measured without taking into account the
mode matching of the input pulse to the micropillar, its value is
overestimated but remains much smaller than the perturbation
in the coherent case. In the incoherent case, the same
restrictions apply, in addition to the fact that the perturbation
acts at ∼800 nm and not directly on the field at 980 nm, leading
to a different dynamics as already mentioned. Additional losses
are also present, for instance, the quantum defect between the
perturbation energy and the energy gap of the wells. A direct
comparison of the perturbation pulse energy to the response
pulse energy is therefore meaningless in such a case.

VI. CONCLUSION AND PERSPECTIVES

In conclusion, we have provided a detailed analysis of
the nonlinear timing and response properties of an excitable
micropillar laser with saturable absorber experimentally, nu-
merically, and, whenever possible, analytically. The nonlinear
latency in the response has been investigated and shown
to provide a natural nonlinear coding mechanism in the
framework of neuromimetic systems called temporal coding.
This coding scheme seems promising for mimicking some
biological mechanisms of visual perception with a substantial
gain in the time scales at stake (>106). We have provided
a physical explanation of the different behaviors observed
during the relative refractory period as a function of the
recombination rates in the gain and saturable absorber sections
in terms of a dynamical change in the net gain. We have
investigated the coherent and incoherent perturbation tech-
niques. The former gives rise to an above-threshold response
amplitude that depends weakly on the incoming stimulus,
as generally expected in an excitable system, whereas the
latter shows a linear dependence. In both cases, however,
the response amplitude depends on the bias pump. We have
provided an explanation for such a behavior and provided
a more general definition of an excitable behavior. Analytic
expressions obtained with singular perturbation techniques
have allowed us to assess the observed behaviors. At last,
we have measured excitable threshold pulse energies as low
as a few femtojoules with typical responses in the 50-fJ range,
in line with current low-consumption devices in the range
of 1 fJ/bit [29]. While this does not account for the bias
pumping energy, this result is encouraging in view of using
such devices as elements of an efficient photonic platform
for artificial neural networks and neuro-inspired computing.
Given the small footprint of micropillar lasers, they can be
coupled to form networks either by free-space optics, using
more advanced arrangements (e.g., a spatial light modulator
as in Ref. [30]), or by evanescent coupling [31]. These
networks could then be used to demonstrate neuromimetic
functionalities such as theoretically studied in Ref. [7].
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