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The beneficial role fluctuations can play in the process of phase synchronization is an-
alyzed in terms of a model with binary input and output signals. Special attention is
paid to the relation between noise-induced phase synchronization and the well-known
phenomenon of stochastic resonance. Analytic predictions are compared with experi-
mental data from a vertical cavity surface emitting laser. Various measures for aperiodic
stochastic resonance, frequency entrainment and stochastic phase synchronization reveal
a satisfactory agreement between theory and experiment.
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1. Introduction

In parallel to the big boom of chaos synchronization [1,2] frequency and phase syn-
chronization in stochastic systems [3] have repeatedly received considerable interest.
Several decades after the seminal works of Stratonovich [4], the revival of effective
phase synchronization explains from the discovery that, for sufficiently strong albeit
subthreshold input signals, the phenomenon of stochastic resonance (SR) [5, 6] can
be reinterpreted in terms of a noise-induced phase synchronization (NIPS). Shortly
after its first experimental and numerical observation [7,8] the relation between ape-
riodic SR [9,10] and NIPS with stochastic signals [11] was established. Eventually,
a fully analytical description of NIPS was reported [12,13] that was based on binary
input and output signals. A direct application of the theory was given in the con-
text of behavioural biology [14]. Recent experiments with a vertical cavity surface
emitting laser (VCSEL) [15] that investigated the stochastic switchings between
alternating polarization configurations under the influence of a stochastic binary
input signal and noise were analyzed in the context of binary aperiodic SR [16,17].

In this paper we present a comparison of the quantifiers for NIPS, extracted
from the last-mentioned VCSEL data, with related analytic expressions from the
theory. To this end, we first discuss different definitions of phase synchronization in
Sec. 2. A short outline of the analytic approach with resulting expressions for the
relevant NIPS measures is sketched in Sec. 3. The comparison between experiment
and theory presented in Sec. 4 constitutes the core of our publication. Conclusions
and an outlook close this Letter.

2. Definitions of Phase Synchronization

Different definitions of phase synchronization exist with implications for its mea-
surement:

1. In the purely deterministic case two systems with instantaneous phases φ1(t)
and φ2(t) are locked (in the n : m mode) if a suitably defined phase difference
ϕn,m(t) = nφ1(t) − mφ2(t) remains bounded for all times. For weak external
periodic forcing of an autonomous oscillator the dynamics of the instantaneous
phase difference (ϕ = ϕ1,1) is governed by the Adler equation [18]

ϕ̇ = ∆ − ∆s cosϕ (1)

that can be identified with the overdamped motion of a particle in a tilted
and corrugated potential U(ϕ) = −∆ϕ+ ∆s sinϕ (see Fig. 1). The transition
from the locked to the running solution occurs when the ratio of the frequency
mismatch (or detuning) ∆ and the synchronization bandwidth (parameter of
nonlinearity) ∆s exceeds unity, i.e.,

∣

∣

∣

∣

∆

∆s

∣

∣

∣

∣

{

< 1 locked solution,
> 1 running solution.

(2)

2. In the presence of unbounded fluctuations, as they occur, for instance, in
Gaussian noise, even in the locked situation |∆| < ∆s the phase difference will
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Fig. 1. The transition from the locked solution (left) to the running solution (right) occurs when
the modulus of the frequency mismatch (∆) exceeds the synchronization bandwidth (∆s).

not remain bounded for all times. Sufficiently large fluctuations eventually will
cause phase slips. The noisy dynamics of the phase difference is described by
the stochastic Adler equation [19]

ϕ̇ = ∆ − ∆s cosϕ +
√

2Dξ(t) (3)

that is now related to the Brownian motion of a particle in the same tilted
and corrugated potential U(ϕ) = −∆ϕ + ∆s sin ϕ. An ensemble of systems
prepared with a narrow peaked initial distribution of phases, as shown in the
top panel of Fig. 2, will evolve in time such that the distribution drifts and
disperses in the way sketched in the bottom panel of Fig. 2.

Fig. 2. An ensemble with a narrow initial distribution will evolve in time due to fluctuations that
cause phase slips. The net effect can be described in terms of phase drift and phase diffusion.

The time T between phase slips is a stochastic variable. In case its average
〈Tlock〉 is large in comparison with the typical time scale T0 of the external
drive, e.g. its period, it is justified to regard the situation as effectively phase
locked and to consider 〈Tlock〉 as the average duration of locking episodes. To
quantify 〈Tlock〉 we consider the second moment of the phase difference

〈ϕ2〉 = 〈ω〉2〈Tlock〉2 + 2Deff〈Tlock〉 = π2 (4)

that combines the drift, specified by the average frequency 〈ω〉, and the diffu-
sion, determined by the effective phase diffusion coefficient Deff . Identifying

Fl
uc

t. 
N

oi
se

 L
et

t. 
20

03
.0

3:
L

19
5-

L
20

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
 @

 S
A

N
 D

IE
G

O
 o

n 
02

/0
3/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



June 3, 2003 17:35 WSPC/167-FNL 00126

L198 J. A. Freund et al.J. A. Freund et al.

the second moment with π2 defines a phase slip and yields the quadratic equa-
tion (4) that can be readily solved for 〈Tlock〉. In this way we can quantify the
criterion for effective phase synchronization as

〈Tlock〉
T0

=
Deff

〈ω〉2T0





√

1 +

(

π〈ω〉
Deff

)2

− 1



 � 1 . (5)

Deriving expressions for the drift or diffusion dominated regimes [13] under-
lines that effective phase synchronization requires both drift and diffusion of
the phase difference to be sufficiently small. Moreover, this immediately im-
plies that frequency locking (〈ω〉 small) without phase locking (Deff large) can
occur.

3. There exists a definition of phase synchronization in the statistical sense that
relates to the deviation of the wrapped phase distribution [4] from an equidis-
tribution. This definition is widely used in the neurosciences and medical
applications [20]. We want to point out that this is a much weaker definition
than that based on the average duration of locking episodes (5). To underline
this statement we point out that for large subthreshold signals and low noise
levels the rare threshold crossing events will be mainly concentrated around
the maxima of the signal. We will, thus, find a sharply peaked distribution of
the wrapped phase difference for suboptimal noise intensity, i.e., even outside
the regime of SR.

4. The phenomenon of SR is often discussed in terms of a noise-induced syn-

chronized hopping between the two wells of a driven bistable potential [5].
Several measures for periodic SR, e.g. the signal-to-noise ratio, the spectral
power amplification or the residence-time distribution, and for aperiodic SR,
e.g. correlation coefficients, coherence function or information theoretic mea-
sures, are used to pinpoint the effect. It is important to notice that SR
already can be observed in the linear response regime [5], i.e. for arbitrary
small signal amplitudes, whereas NIPS sets in only beyond some minimal sig-
nal amplitudes [12]. From this we conclude that all measures proving SR in
the linear response regime cannot be measures of NIPS.

3. Analytic Predictions

In this section we briefly outline the approach that culminates in explicit expres-
sions for 〈ω〉 and Deff and, thus, allows to evaluate our preferred criterion (5) for
NIPS analytically. As mentioned before, the approach is based on dichotomic sig-
nal representations for the input (−1, +1) and the output (−1, +1) of a stochastic
resonator and as such optimally fits the experimental results of the VCSEL ex-
periment [16, 17]. In this twice dichotomic signal representation the drive-response
system is described in terms of four states that are connected by transitions as
shown in Fig. 3.

While the switching rate γ of the assumed dichotomic Markovian input is uni-
form the output switching events depend on the instantaneous configuration and
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Fig. 3. Schematic diagram of the twice dichotomic stochastic system: vertical transitions corre-
spond to a switch of the input whereas horizontal transitions indicate a flip of the output state.
For a dichotomic Markovian input switches occur with a constant rate γ. The two noise dependent
rates a1 and a2 characterize the switching behaviour of the resonator and involve the amplitude
A of the driving signal in such a way (a1 < a2) that the asynchronous states (3 and 4) are
depopulated in favour of the synchronous ones (1 and 2).

are governed by the two noise dependent rates

a1 = α(D) exp

(

−A

D

)

and a2 = α(D) exp

(

+
A

D

)

(6)

where

α(D) = α∞ exp

(

−∆V

D

)

(7)

is the Kramers rate of the symmetric stochastic resonator, i.e. for vanishing input
signal (α(D) = a1 = a2 for A = 0). From (6) we see that with increasing input
amplitude A the growing imbalance a2 − a1 ≥ 0 is responsible for depopulating
the asynchronous states (3 and 4) in favour of the synchronous ones (1 and 2). Of
course, we always obey A < ∆V to keep the input signal subthreshold.

Due to the restriction of twice dichotomic signals related phases φin(t) and
φout(t) are discrete, viz. multiples of π, and the same is true for the instanta-
neous phase difference ϕ(t) = k(t)π. Being equipped with the rates γ, a1 and a2 we
can formulate the stochastic dynamics of the phase difference by virtue of a master
equation

∂Pk

∂t
= γ (Pk+1 − Pk) + gk−1Pk−1 − gkPk (8)

where Pk is a shorthand notation for P (ϕ = kπ, t|ϕ0, t0), i.e., the probability to
experience a value kπ for the phase difference ϕ at time t (conditioned by some
initial value ϕ0 at time t0), and

gk = α(D) exp

(

− cos(kπ)
A

D

)

. (9)

Note that σ(ϕ) = cos(ϕ) is the normalizeda input-output correlator, hence, 〈σ〉
is nothing but the standard correlation coefficient widely used as a key quantifier
for aperiodic SR [9, 11]. It is straightforward to derive a kinetic equation for this

aBy restriction to the binary values ±1 the standard deviations of input and output signals are
one.
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quantity from the master equation and, subsequently, its asymptotic stationary
value

〈σ∗〉 =
a2 − a1

2γ + a1 + a2

. (10)

A similar treatment yields the average frequency

〈ω〉 = 〈ϕ̇〉 = −〈ωin〉 + 〈ωout〉 = π

[

−γ +
a1 + a2

2
− a2 − a1

2
〈cosϕ〉

]

(11)

with a related stationary asymptotic expression 〈ω∗〉 by substituting 〈σ∗〉 for 〈cos ϕ〉.
Notice that (11) resembles the averaged stochastic Adler equation (3); in this con-
text we identify π[a1+a2

2
− γ] with the frequency mismatch ∆ and π a2−a1

2
with the

synchronization bandwidth ∆s. The noise dependence of both these parameters is
the very reason why noise-induced frequency locking can occur.

In Fig. 4 (right panel) we plot the stationary switching frequency of the output
〈ω∗

out〉/π = 〈ω∗〉/π+γ as a function of the noise intensity D for various subthreshold
amplitudes A (the values of all parameters are specified in Sec.4). For sufficiently
large amplitudes we find a plateau of the curve at the switching frequency of the
input. This is a clear signature of noise-induced frequency locking and the first
prerequisite of NIPS.
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Fig. 4. Average output switching frequency 〈ωout〉 vs. noise intensity D for a binary input signal
(with bit duration Tb = 2.5µs) and for increasing driving amplitudes (left experiment Aexp, right
model A = η∆V ): circles - 50 mV and η = 0.08, boxes - 100 mV and η = 0.16, diamonds - 150 mV
and η = 0.24, triangles up - 200 mV and η = 0.32, triangles left - 250 mV and η = 0.4; other
parameters see text. The horizontal dashed lines mark γ/2 = 100 kHz.

A calculation of the effective diffusion coefficient Deff proceeds by computing
the following expression

Deff =
1

2
∂t[〈ϕ2〉 − 〈ϕ〉2] . (12)

The calculation is straightforward and since it is published in [12] we will not show
the explicit result here. The basic structure of the asymptotic stationary expression
is Deff = Din + Dout −Dco with obvious interpretation of Din = γπ2/2 and Dout =
〈ω∗〉π/2. The coherence term Dco alone can cause a diminishing of the effective
phase diffusion. Since it combines terms that all scale with powers of the stationary
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input-output correlator 〈σ∗〉 a high value of the latter is necessary. In Fig. 5 (right
panel) we show the stationary effective diffusion coefficient D∗

eff as a function of
noise intensity D for the same set of parameters chosen in Fig. 4. In the zero-noise
limit phase diffusion is solely due to the stochastic input signal and, thus, attains
the value Din = γπ2/2. For sufficiently large amplitudes we see that the diffusion
is reduced below this value if the strength of fluctuations is chosen optimally; this
is the second prerequisite of NIPS.

0 0.01 0.02 0.03 0.04 0.05
Noise (V2

RMS)

105

106

107

D
φ
  (

ra
d/

se
c)

0 0.01 0.02 0.03 0.04 0.05

D

105

106

107

D
ef

f  (
ra

d2 /s
ec

)

Fig. 5. Stationary effective diffusion coefficients D∗

eff
of the phase difference ϕ vs. noise intensity

D and for the driving amplitudes of Fig. 4 (left experiment, right model). The horizontal dashed

lines mark the expected zero noise values (see text): left γ π
2

4
≈ 500 rad2 kHz; right γ π

2

2
≈ 1000

rad2 kHz.

Being equipped with both 〈ω〉 and Deff (for the stationary asymptotics) we can
readily compute the average duration of locking episodes according to the expression
in (5). The result is shown in Fig. 6 (right panel). With increasing signal amplitude
a narrow peak occurs for optimal noise that, for the largest amplitude, indicates a
mean locking duration of four to five switches of the input.
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Fig. 6. Left: the experimental input-output correlator 〈xoutxin〉 (non-normalized) vs. noise inten-
sity D and for the driving amplitudes of Fig. 4. Right: the theoretical average duration of locking
episodes 〈Tlock〉 (normalized to the mean input switching time T0 = γ−1) vs. noise. Notice that
the correlator maintains large values even in the region of high noise intensities where phase slips
occur rather frequently, thus limiting the duration of locking epochs.
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4. Comparison Between Experiment and Theory

The physical system is composed of a VCSEL followed by a polarizer and a detection
system (see Ref. [15] for a detailed description of the setup). By sweeping the
pump current, the laser can emit in different polarization and transverse profile
configurations. The transition between two states is generally characterized by a
bistable current region, where noise-induced jumps occur between the two states. In
this case the laser dynamics can be reproduced by a van’t Hoff-Arrhenius process,
with average residence times usually given by a Kramers law, i.e., an exponential
function of the inverse noise intensity [21]. By feeding in additional noise into the
pump current, the statistics of the jumps can thus be changed. The polarization
fluctuations are transformed into light intensity variations by the polarizer and
detected by means of a photodiode whose signal is acquired by a digital scope. The
signals from a variable intensity, white-noise generator (10 MHz bandwidth) and a
pseudo-random binary sequence generator are summed and coupled into the laser
input current. The current steps are chosen small enough not to induce a laser
state jump without the aid of noise (subthreshold condition). The binary sequence
is a 16,000-bit word with a bit duration denoted Tb [16, 17]. Even though the
distribution of residence times Tin scales exponentially, i.e., p(Tin = k Tb) = 2−k, its
coefficient of variation (the ratio of standard deviation and mean) is 1/

√
2 which is

slightly at variance with the value one for the dichotomic Markovian process used
in the theory.

An example of the signal detected by the photodiode, for different values of
the input noise strength, is shown in Fig. 7. For low noise (Fig. 7(a)) the laser
mainly remains in its initial state, even if a small amplitude modulation is visible.
Increasing the noise, some jumps occur (Fig. 7(b)) and, for an input noise around
400 mVrms, the output closely follows the input signal (Fig. 7(c)). Finally, for
larger noise strengths, the laser dynamics is determined by the fluctuations rather
than by the input string, with a strong decorrelation between input and output
(Fig. 7(d),(e)).

To describe the data of the VCSEL measurements the parameters of the model,
i.e., α∞, ∆V , A and D have to be related to the control parameters of the experi-
ment. Some relations between experimental and model parameters were discussed
in [15–17] and used to estimate α∞ = 1 Ghz. For the effective barrier height we
chose ∆V = 0.15 (in units that are identically used for D). The subthreshold signal
amplitude is related to the barrier height via A = η∆V with 0 ≤ η < 1. A linear
relation between the experimental signal amplitudes Aexp and the model parameter
A was fitted such that Aexp = 250 mV corresponds to η = 0.4.

The study of the NIPS regime in the experiment can be carried out by evaluating
both the average frequency (Fig. 4) and the effective diffusion coefficient (Fig. 5)
from the measured laser time series. We used different methods for the definition
of the phase difference, namely, the Hilbert transform and the linearly interpolated
phase [3]. Both definitions gave the same results. The direct comparison of experi-
mental results with analytic data shows a satisfactory qualitative agreement. The
discrepancies between experimental and theoretical curves can be explained by the
simplistic identification of the model parameter D with experimental noise inten-
sity. In [15] (cf. Fig. 7 therein) intrinsic noise (zero offset) and saturation effects
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Fig. 7. Polarized laser intensity I for different input noise intensities, with a 50 MHz acquisition
bandwidth. (a): 100, (b): 200, (c): 400, (d): 600 and (e): 1200 mVrms. In (c) the input pattern
is shown (with an arbitrary vertical scale). A sequence of 50 bits (bit duration: Tb = 4µs) is
displayed.

(nonlinear stretching for large noise) were shown to exist when fitting experimental
data to a phenomenological bistable model. A closer analysis of these relations in the
context of the analytic model is left to future research. Moreover, the discrepancy
of a factor two that is observed between the zero-noise phase diffusion coefficients
of experiment and theory follows directly from the aforementioned difference in the
coefficients of variation of the input switch time distributions.

Returning to our statements about the difference between measures for SR and
NIPS we also present the experimental input-output correlator 〈xoutxin〉 in Fig. 6
(left panel) together with the average duration of locking episodes 〈Tlock〉 according
to (5) (right panel). As can be seen from the figure the rapid uprise of 〈xoutxin〉
marks the onset of NIPS, however, the correlator is still high in a region beyond
optimal noise where the average locking episodes are already rather short. This
discrepancy between the quantifiers pinpoints the difference between (aperiodic)
SR and NIPS.

5. Conclusions

The phenomenon of NIPS is a much more stringent effect than (aperiodic) SR.
For noise intensities where SR occurs NIPS may or may not occur. Specific NIPS
measures are based on the average duration of locking episodes. Experimental
data of the VCSEL driven by a binary stochastic input (similar to a dichotomic
Markovian process) were evaluated proving the occurrence of NIPS in a narrow
range of noise intensities outside of which the correlation between input and output
is still significant. Based on a semi-quantitative analysis, i.e., some parameters
were derived from measurement data while others were fitted, the experimental
measures of NIPS can be reproduced to some extent by analytic expressions from
a simple stochastic four state model. To obtain a better quantitative agreement a
more careful analysis of the relation between experimental and model parameters
is required.
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