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Noise-assisted transmission of binary information:
Theory and experiment
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We study the response of a bistable vertical cavity surface emitting laser to an aperiodic binary signal, by
adding a variable amount of noise. The resulting behavior is an example of aperiodic stochastic resonance, and
in this work we give a detailed comparison between analytical and numerical results and accurate experimental
measurements. We characterize the phenomenon by using different appropriate indicators, which also allow us
to quantify the binary information transmission. We show that the quality of the transmission is enhanced by
a suitable amount of noise, and we give a physical picture of the phenomenon.
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I. INTRODUCTION

The activity in the field of stochastic processes, and
particular of noise-induced ordering, has intensified dur
the last years. This subject is now recognized as extrem
important in a large variety of fields, ranging from biolog
and geology, to information theory and physics. An imp
tant example of these phenomena is represented by sto
tic resonance~SR!. SR is a specific response of bistable sy
tems to a sinusoidal modulation in the presence of noise.
improvement of the quality of the output signal is observ
as the amount of noise is increased, up to an optimal~reso-
nant! value. SR was introduced in 1981@1,2# to explain the
periodicity of the continental ice volume in the quaterna
era, and it has been the object of extensive investigati
mainly since the experimental evidence in a bistable r
laser@3#. SR has been studied in detail with analogic sim
lations and with analytical and numerical investigations@4#.
Recently, the observation of SR in the dynamical behavio
a vertical cavity surface emitting laser~VCSEL! @5# has pro-
vided experimental results of the same quality of mo
simulations, allowing one to directly verify many of the pr
dictions of the theory@6#.

SR is often considered as an intriguing mechanism to
prove the quality of signal transmission in nonlinear syste
However, while investigations of SR have provided impo
tant insights into the physics of noise-induced resonance
generalization from a sinusoidal shaped to an arbitra
shaped large input signal is not straightforward. This is s
ply suggested by the fact that the matching condition
tween the input signal frequency and the Kramers rate, t
cal of SR, cannot be obviously applied to nonperiod
signals.

The analysis of the response of noisy, bistable system
small,aperiodicsignals was recently addressed. In 1994 N
iman and Schimansky-Geier@7# studied the transmissio
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through a noisy, bistable system of a particular sign
namely, harmonic noise. The term aperiodic stochastic re
nance~ASR! was coined in Ref.@8#, referring to the ampli-
fication of sub-threshold, random signals in the Fitz-Hug
Nagumo model of an excitable system. The syst
undergoes a resonant regime which can be shown by ev
ating the cross-correlation of the output vs the input sign
The theoretical and numerical analysis was extended in R
@9# to several kind of systems. Further theoretical and
merical studies of the response of a noisy system to bin
random input signal were reported in Refs.@11# and @10#.

This large amount of modeling effort was motivated
the study of the role of noise in the perception mechanis
Several observations of related phenomena in biological
tems were recently reported@12#. These works are of grea
value due to the clear signature of the phenomena prese
However, the quality of the measurements cannot be su
cient for checking the full predictions of the models.

The situation is different in Ref.@13#, where we experi-
mentally investigated the response of a bistable, optical s
tem to a random, binary~telegraph! signal, changing the
amount of applied external noise. In that preliminary wo
we showed experimental evidence of ASR, with excelle
reproducibility, and a control of the parameters, which ma
the work qualitatively different from previous observation
to our knowledge.

The particular kind of signal considered is not only ve
useful for a basic understanding of the physical mechani
but is also of particular interest in digital communication
We discussed this aspect in a previous paper@14# devoted to
the noise-enhanced binary signal transmission in opt
communications.

In this paper, we summarize and detail the experimen
results first presented in Ref.@13#, and describe the theore
ical models which allow for an excellent reproduction of t
experimental findings. We derive both analytical and n
merical results, yielding a clear physical picture of the noi
induced dynamics.

Besides the dynamical approach, a different point of vi
in our case is particularly interesting, i.e., the study of t
©2001 The American Physical Society10-1
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BARBAY, GIACOMELLI, AND MARIN PHYSICAL REVIEW E 63 051110
flow of information through a bistable system with a variab
input noise. For this purpose, we introduce some spec
indicators of the quality of the transmission. In this paper,
present a basic analysis of the phenomenon, studying
single-bit transmission statistics. This approach allows fo
clear understanding of the physical processes underlying
observed behavior, and for a simple analytical descriptio

The paper is organized as follows. In Sec. II we summ
rize the experimental observations. In Sec. III we introdu
and discuss the models, both with analytical and numer
techniques, whose previsions are compared with the exp
mental results in Sec. IV. In Sec. V we draw our concludi
remarks.

II. EXPERIMENTAL RESULTS

Preliminary reports of the experimental observations w
given in Refs.@13,14#. The physical system is composed of
VCSEL followed by a polarizer and a detection system~see
Ref. @6# for a detailed description of the setup!. By sweeping
the pump current, the laser can emit in different polarizat
and transverse profile configurations. The transition betw
two states is generally characterized by a bistable cur
region, where noise-induced jumps occur between the
states. The laser dynamics can be reconducted in this ca
a van’t Hoff–Arrhenius@15,16# process, with average pe
manence times usually given by a Kramers law, i.e., an
ponential function of the noise intensity@17#. By introducing
additional noise into the pump current, the statistics of
jumps can thus be changed. The polarization fluctuations
transformed into light intensity variations by the polarize
and detected by means of a photodiode whose signal is
quired by a digital scope. The signals from a variable int
sity, white-noise generator~10-MHz bandwidth! and a pseu-
dorandom binary sequence generator are summed
coupled into the laser input current. The binary sequence
16 000-bit word with a bit duration of Tb54 ms. Its ampli-
tude is 0.27 mA~peak to peak!, smaller than the width of the
bistable region~0.49 mA!. As a consequence, the curre
steps are not large enough to induce a laser state jump w
out the aid of the noise.

An example of the signal detected by the photodiode,
different values of the input noise strength, is shown in F
1. For low noise@Fig. 1~a!# the laser mainly remains in it
initial state, even if a small amplitude modulation is visib
Increasing the noise, some jumps occur@Fig. 1~b!#, and, for
an input noise around 400 mVrms , the output follows the
input signal very well@Fig. 1~c!#. Finally, for larger noise
strengths, the laser dynamics is determined by the n
more than by the input string, with a strong decorrelat
between input and output@Figs. 1~d! and 1~e!#.

To quantify the observed behavior, we evaluate the cro
correlation between the input and output signals. For e
value of the noise we plot the maximum of the normaliz
correlation

CIO5maxt$@xin~ t !2 x̄in#@xout~ t1t!2 x̄out#%, ~1!

where the overline denotes the time average, and the v
ablesxin andxout are rescaled with respect to half the diffe
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ence between the two stable states. The result is show
Fig. 2. A well defined peak is present atD.350 mVrms ,
indicating the optimal reproduction of the input signal. F
each value of the noise the cross-correlation has a maxim
for a nonzero time lagtmax between input and output. How
ever, we point out that the experimental values ofCIO are
not significantly changed if a zero time lag is chosen, inste
of tmax. For the sake of simplicity, in Sec. III we wil
present a theoretical analysis, neglecting the time lag. A
tailed study of the time lag, i.e., of the synchronization b
tween input and output signals, will be reported elsewhe

As the input signal consists of a binary sequence, it
interesting to study how the associated information is tra
mitted at the output. We start by defining a procedure

FIG. 1. Polarized laser intensityI for different input noise inten-
sities, with a 50-MHz acquisition bandwidth.~a! 100, ~b! 200, ~c!
400,~d! 600, and~e! 1200 mVrms . In ~c! the input pattern is shown
~with an arbitrary vertical scale!. A sequence of 50 bits~bit duration
4 ms! is displayed.

FIG. 2. Normalized cross-correlation between the input and o
put signals. Dots: experimental data. Squares: analytical resul
Eq. ~14! using the experimental Kramers times. The dashed line
guide for the eye.
0-2
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NOISE-ASSISTED TRANSMISSION OF BINARY . . . PHYSICAL REVIEW E63 051110
associate a binary value~0 or 1! to the output signal for each
of the time intervals corresponding to the input bits~we as-
sume that the bit lengthTb is known!.

We use two different methods: the output bit is defined
comparing, with a threshold, either the signal sampled o
in the bit or the signal averaged over the bit duration. T
threshold value is chosen as the average of the output s
of a sufficiently large number of bits.

Concerning the former procedure, sampling the out
signal at the very beginning of the bit gives a result which
strongly reminiscent of the previous bit state. It is clear t
the best result is obtained by sampling the signal as lat
possible, when the probability distribution of the output st
has relaxed to the distribution imposed by the input bit. W
therefore take the sample at the end of the bit.

The synchronization between the calculated output st
and the input is obtained by shifting the starting point for t
averaging process in order to maximize the correlation
tween input and output strings. This procedure is repea
for each value of the input noise.

The indicator chosen to quantify the transmission qua
is the bit error rate~BER! B, defined as the percentage of th
wrong transmitted bits. The BER is commonly used in co
munications, as it represents the simplest way to evaluate
efficiency of a binary data channel. According to the tw
methods used to assign the output bit value, in the follow
we will use the notationBS for the first method andBA for
the second one.

In Fig. 3 we report the experimental measurements ofBS
as functions of the input noiseD. A clear minimum is found
for a well defined value ofD. A similar behavior is obtained
by measuringBA ~Fig. 4!. In this case, a slower increase
the indicator is observed after the minimum.

In the next sections we will compare the experimen
findings with the predictions of theoretical models. For th
purpose, we will use some experimentally determined
rameters in the theoretical expressions. In particular,
measured the average time period spent by the system in

FIG. 3. Bit error rate evaluated by sampling the output signa
the end of the input bit, vs input noise. Squares: experimenta
sults. Circles: analytical results from Eq.~10! using the measured
Kramers times. Stars: results using extrapolated Kramers time
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two output levels between two successive jumps. This av
age time is measured for both output states, and for the
values of the input signal as a function of the noise. If 0 a
1 are the values of the input bit and if we call2 and1 the
corresponding output states, we can defineT6

0,1 as the mean
time spent in the state6, respectively, during a given inpu
bit 0 or 1. The measurements were performed by keeping
input level for a long time, i.e., we measured the station
mean times.

The results are reported in Fig. 5. The measurements
carried out for high enough noise, in order to have suffici
statistics in a reasonable time. The measured mean time
functions of the inverse of the noise, are well fitted by
exponential function, according to the Kramers law@17#, al-
lowing us to extrapolate the results for low noise.

t
e-

FIG. 4. Bit error rate evaluated by averaging the output sig
over the input bit length versus input noise. Squares: experime
results. Circles: analytical resuls from Eqs.~17! and ~19! using the
measured Kramers times. Stars: results using extrapolated Kra
times.

FIG. 5. Experimental Kramers times vs noise:T2
1 ~empty

circles!, T2
0 ~full circles!, T1

1 ~empty squares!, and T1
0 ~full

squares!. The dashed lines are the fit with an Arrhenius law for lo
noise extrapolation of the times.
0-3



o
a-

in
c-
-

io
hi

e

o
po
tio
a
be
qu

e

e

ic
e

nt
on
c

t-
a

wi

o
b

ti
ie
he
to

e
a

w

in

e

s,
ed

dy
an

ns

e

e

e

b-
ce,

BARBAY, GIACOMELLI, AND MARIN PHYSICAL REVIEW E 63 051110
III. MODELS

The most widely used model for the VCSEL is the s
called spin-flip model@18#. It has been reduced using adi
batic approximations by Willemsenet al. @19#, who indeed
obtained a local description of the polarization switchings
terms of the two well potentials. A different kind of redu
tion was described in Ref.@20#, where the authors again ob
tained a local model with a bistable potential. A discuss
of the validity of such reductions is beyond the scope of t
paper. However, as reported in Refs.@6,21#, the dynamics of
the laser system can be locally well described by an ov
damped Langevin model with a two-well potential.

In Ref. @21# we also showed that a phenomenological p
tential, obtained from the experimental histograms of the
larized laser intensity, leads to an extremely good predic
of the residence time distributions. However, a simple qu
tic potential is sufficient to reproduce the features descri
here. The model considered is based on the Langevin e
tion

ẋ52
]V~x,t !

]x
1j~ t !, ~2!

whereV(x,t)5x422x21m(t); j is a white, Gaussian nois
term such that̂j(t)j(t8)&52D3d(t2t8); m(t) is the input
signal, i.e., a random binary sequence switching betwe
2A ~level 0! andA ~level 1! everyTb . The variablex rep-
resents the polarized laser intensity.

We integrate Eq.~2! with a second order, stochast
Runge-Kutta algorithm@22#. The integration step is 0.05, th
bit height isA50.2, and the bit length isTb5100. The so-
lution is sampled with the same rate as the experime
signal, for a better comparison. The results of the simulati
are used to verify the analytical expressions found in Se
III A and III B. This comparison is performed for a symme
ric potential, while the analytical calculations are given in
more general, asymmetric case, and directly compared
the experimental results in Sec. IV.

For each value of the input signal, the time evolution
Eq. ~2! is characterized by fast jumps between the two sta
statesx6 of the potentialV(x). As the switching time is
much smaller than the permanence time within the poten
wells, a simple description of the dynamics can be carr
out in the framework of a two-level model. We introduce t
states$1,2%, corresponding to the system being close
x6 . We can now use four transition ratesW6

0,1 for the two
input levels$0,1%. The notation is summarized in Fig. 6. W
thus assume that the distributions of the residence times
exponential, according to the Arrhenius–van’t Hoff la
@15,16#, as we have experimentally verified,

P6
0,1~T!5

1

T6
0,1

expS 2
T

T6
0,1D , ~3!

whereT6
0,1 ~Kramers times! are the mean time of residence

the state6 during a given input andT6
0,151/W6

0,1 ~see Fig.
6!. The underlying assumption is to neglect the intraw
motion.
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In the following we consider two simple approache
which offer a clear picture of the physical processes involv
and allow for analytical calculations. In particular, we stu
the master equations of the two-level model, obtaining
explicit evaluation ofBS and CIO , and we introduce a
method to derive the residence time probability distributio
within a bit, which in turn are used to evaluateBA .

A. Master equation approach

We definen6
0,1(t) as the two probabilities of being in th

states$1,2% when the input is 0,1 at the timet after the
beginning of the input bit.n6

0,1(t) can be calculated using th
master equations

] tn1
0,1~ t !52W1

0,1n1
0,1~ t !1W2

0,1n2
0,1~ t !,

~4!
] tn2

0,1~ t !5W1
0,1n1

0,1~ t !2W2
0,1n2

0,1~ t !,

with n1
0,11n2

0,151.
Equations~4! are solved, yielding

n6
0,1~ t !5n6~0!e2tb0,11a6

0,1~12e2tb0,1!, ~5!

where we have introducedb0,15W1
0,11W2

0,1 and a6
0,1

5W7
0,1/b0,1. We remark thatn6(0) does not depend on th

actual input bit, but on the previous history.
Due to the random nature of the input signal, the pro

ability for each input bit is equal to 1/2. As a consequen
the initial probabilities are given by

n6~0!5 1
2 @n6

1 ~Tb!1n6
0 ~Tb!#. ~6!

Equations~5! and ~6! give, as solutions,

n6
0,1~ t !5

a6
0,1~12e2Tbb0,1!1a6

1,0~12e2Tbb1,0!

22~e2Tbb01e2Tbb1!
e2tb0,1

1a6
0,1~12e2tb0,1! ~7!

and, at timeTb ,

FIG. 6. Definition of the rates for the model.
0-4
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n6
0,1~Tb!5

a6
0,1~12e2Tbb0,1!S 12

1

2
e2Tbb1,0D1

1

2
a6

1,0~12e2Tbb1,0!e2Tbb0,1

12~e2Tbb01e2Tbb1!/2
. ~8!

The indicatorBS is given by

BS5 1
2 @n2

1 ~Tb!1n1
0 ~Tb!#. ~9!

Inserting Eq.~8! into Eq. ~9!, we obtain

BS5
1

2 S 12
~a1

1 2a1
0 !@12~e2Tbb01e2Tbb1!1e2Tb(b01b1)#

12~e2Tbb01e2Tbb1!/2
D . ~10!
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In the symmetric case (W2
0 5W1

1 51/Tl and W1
0 5W2

1

51/Ts), we obtain

BS5
1

2 F12~12e2(1/Tl11/Ts)Tb!
Tl2Ts

Tl1Ts
G . ~11!

For a comparison of Eq.~11! with the result of the nu-
merical simulation, we can deriveTl ,s from the potential
V(x), following Kramers@17#. A simplified expression, valid
for small A, is

Tl ,s5
p

2A2
expS DV6A

D D , ~12!

where the ‘‘1’’ refers to Tl , and vice versa, andDV is the
potential barrier height in the absence of modulation. A m
accurate expression takes into account the real shape o
potential with the input signal, and reads@24#

T6
0,15

2p

AV9~x6!uV9~x0!u
expS V~x0!2V~x6!

D D , ~13!

x0 being the unstable point of the potential, which is giv
for the appropriate value of the input bit.

In Fig. 7 we report a comparison between the integrat
of the Langevin equation~2! ~circles! and the value obtained
from Eq. ~11!, using Eqs.~12! ~dashed line! and ~13! ~dot-
dashed line!. In spite of the small value ofA50.2, the latter
expression yields a better agreement at high noise. Suc
agreement also confirms that the discrete two-level appr
mation used for the analytical results is valid.

The correlationCIO can be evaluated by integrating ov
the bit interval the difference between the probabilities to
in the right and wrong states:

CIO5
1

2Tb
E

0

Tb
@~n1

1 2n2
1 !1~n2

0 2n1
0 !#dt. ~14!

In the symmetric case we obtain

CIO5
Tl2Ts

Tl1Ts
3F12S 12e2[(1/Tl )1(1/Ts)]Tb

~1/Tl11/Ts!Tb
D G . ~15!
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Also for CIO , we find a very good agreement with the resu
of the Langevin equation integration.

B. Residence time distributions: averaged BER

In order to evaluateBA we cannot use the probabilit
densitiesn6

0,1, since an ensemble average over the wh
sequence would be implied. In fact, this indicator require
specific operation within each bit which cannot be perform
on the average distributionsn6

0,1. It is therefore not trivial to
find an analytical expression forBA starting from the maste
equation. Here we will introduce an alternative metho
based on a statistical analysis of the state jumps within
single bit. We still assume that our system is described b
two-level approximation, in which the residence time dist
butions in a given state1 or 2 are given by the~3!.

Assuming, e.g., that the input bit is 1, we can calcula
the probability densityP1

1 (T) to remain, on the whole, a
time betweenT and T1dT in the 1 state duringTb . We
have to sum over all possible ways of dividing an interval
durationTb into subintervals, having a total time of residen

FIG. 7. Numerical and analytical calculation of the sampl
BER (BS) for the parameters given in Sec. III.BS is obtained from
the Langevin equation@Eq. ~2!# integration~circles!. In the analyti-
cal expression@Eq. ~11!#, the Kramers times are calculated usin
Eq. ~12! ~dashed line! or Eq. ~13! ~dot-dashed line!.
0-5
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in the1 state equal toT. The probability of each subinterva
is given by Eq.~3!. We obtain

P1
1 ~T!5

1

2 H expS 2
T

T1
1 D expS 2

Tb2T

T2
1 D

3F Tb

T1
1 T2

1 (
n50

`
1

n! ~n11!! S T~Tb2T!

T1
1 T2

1 D n

1S 1

T1
1

1
1

T2
1 D (

n50

`
1

~n! !2 S T~Tb2T!

T1
1 T2

1 D nG
1d~T2Tb!expS 2

Tb

T1
1 D 1d~T!expS 2

Tb

T2
1 D J .

~16!

The first~second! term in square brackets comes from
the events in which the intervalTb is divided into an odd,
namely, 2n13 ~even, namely 2n), number of subintervals
The delta terms are the contributions for the case of no jum
occurring during the bit interval@23#. The factor 1

2 comes
from the average over the two possible states of the syste
the beginning of the bit. Equation~16! can be further reduced
by summing the power series, obtaining

P1
1 ~T!5

1

2 H expS 2
T

T1
1 D expS 2

Tb2T

T2
1 D

3F Tb

T1
1 T2

1
A T1

1 T2
1

T~Tb2T!
3I 1S 2AT~Tb2T!

T1
1 T2

1 D
1S 1

T1
1

1
1

T2
1 D 3I 0S 2AT~Tb2T!

T1
1 T2

1 D G
1d~T2Tb!expS 2

Tb

T1
1 D

1d~T!expS 2
Tb

T2
1 D J , ~17!

where the functionsI n are the modified Bessel functions o
ordern.

Similar relations hold forP2
0 (T). Moreover, we have the

relations:

P1
0,1~T!5P2

0,1~Tb2T!. ~18!

BA is just the probability to remain in the1 state for a time
longer thanTb/2 while the input bit is 0, or to remain in th
‘‘-’’ state while the input bit is 1, i.e.,

BA5 1
2E

Tb/2

Tb
@P1

0 ~T!1P2
1 ~T!#dT. ~19!
05111
s
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In addition, in the symmetric case we haveP1
1 (T)

5P2
0 (T)5Pl(T) and P2

1 (T)5P1
0 (T)5Ps(T). Combining

these results, one obtains

BA5E
Tb/2

Tb
Ps~T!dT5E

0

Tb/2

Pl~T!dT. ~20!

The analytical expressions~19! and ~20! are integrated
numerically.

In Fig. 8 we plot the values obtained from the integrati
of the Langevin equation@Eq. ~2!# ~circles! together with the
result of Eqs.~20!, ~17!, and~13!. The agreement is good a
long as the noise remains smaller than the potential de
For high noise~after the resonance! the Kramers expression
for the permanence times is no longer reliable, since
time-scale separation hypothesis is no longer verified~see
Refs.@17,24#!. However, we stress that the comparison w
the experimental results is based on an analytical calcula
with experimentally measured permanence times. In
case the agreement is still good, as shown in Sec. IV.

The analytical result shown in Fig. 8 refers to speci
values ofA andTb , and considers a simple potential givin
a specific relation betweenTl andTs . However, the analyti-
cal expressions found forBA are more general, and it i
interesting to analyze their behavior for arbitrary values
the parameters. In Fig. 9 we report a contour plot ofBA
versus the rescaled residence timesTl /Tb and Ts /Tb . The
only assumption for this graph is the exponential decreas
Eq. ~3! in the two states. The region above the equal tim
line @labeled by2 log10(2)# is meaningless, since it would
imply Tl,Ts . Once givenTl and Ts as functions of the
noise, on the contour plot we can trace a path which gi
BA . As an example, assuming a Kramers relation forTl and
Ts @e.g., Eq.~12!#, we obtain a straight path~dashed line!
given by y5ax1b, where a5122A/(DV1A), b
52A log(p/2A2Tb)/(DV1A), and (x,y) are the coordinates
in the contour plot. Increasing the noise, the path is follow

FIG. 8. Numerical and analytical calculations of the averag
BER (BA) for the parameters given in Sec. III.BA is obtained from
an integration of the Langevin equation@Eq. ~2!# ~circles!. In the
analytical formula@Eqs.~20! and ~17!#, the Kramers times are cal
culated using Eq.~13! ~dashed line!.
0-6
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from the top right to the bottom left. The resonant behav
of BA is clearly visible. The change of parameters yields
change of the slope and a shift of the path, and there
induces a change of the resonance position and depth. F
9 gives a comprehensive picture ofBA behavior, for a very
general system.

An inportant feature that can be inferred from Fig. 9 co
cerns the transmission rate. As the meaningful phys
quantities are the rescaled residence times, the bit dura
Tb can be arbitrarly reduced, providing that a suitab
amount of noise accordingly reduces the Kramers times
course, in a real system the transmission rate is limited
effects which are not included in our simple descriptio
Some examples in our system are the finite jump time
tween the two polarizations~about 10 ns!; the noise intro-
duced in the laser current, which also produces fluctuati
in the total intensity, which eventually mask the signal; a
the quasipotential, that does not follow istantaneously
modulation on the pump current. This last point is presen
subject of investigations. Using the probability densities,
correlationCIO can also be evaluated as

CIO5 1
2E

0

Tb
dT

2T2Tb

Tb
@P1

1 ~T!1P2
0 ~T!#, ~21!

obtaining the same result as in Sec. II.

IV. DISCUSSION

In this section we compare the numerical and analyt
results with the experimental measurements, and discus
physical contents of the phenomena. In Ref.@13# we already
reported a preliminary investigation of the system behav
based on the study of the correlationCIO . For the sake of
completeness, here we summarize the main points. In Fi

FIG. 9. Bit-averaged BER from Eq.~20! as a function of
Tl ,s /Tb . We plot the contour lines of log10(BA) ~solid lines!. The
contour line2 log10(2) corresponds to the limiting case of a com
pletely uncorrelated output binary signal, whenTs5Tl . The dashed
line represents a scan onD, increasing from right to left, for the
same parameters of Fig. 8. The region beyond the contour l
2 log10(2) is meaningless, as it corresponds toTs.Tl .
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we compare the experimental data with the prediction of
~14!, where the typical timesT6

0,1 are measured as describe
in Sec. II.

The agreement is very good. However, in order to sh
light on the underlying physical processes, we consider
limiting cases of low and high noise. Indeed, the resona
results from two independent processes, whose effects on
output signal reproduction are monotonic with noise and
posite.

For low noise, the system response during each bi
strongly influenced by the final output state in the previo
bit. For high noise, fast fluctuations are found in the respo
@see Figs. 1~d! and 1~e!#, again leading to a decorrelation o
the output signal versus the input. The ratioTl /Ts decreases
toward unity, andCIO vanishes.

A simple estimation of the input-output correlationCIO
can be given in these two limiting cases. For low noise,
consider that at most one single jump toward the right out
state can occur within a bit: this first jump is necessary
lose the memory of the previous state. This amounts to s
ing thatTl→`. When the system is in the wrong state at t
beginning of the bit interval, in order to induce a state fl
the residence time in the wrong state (Ts) must be shorter
enough than the bit length. The correlation can be evalua
as the sum of two contributions, corresponding to the sys
starting, respectively, in the right state~and remaining there!
and in the wrong state~with one jump to the right one within
the bit!:

CIO.
1

2
1

1

2 H E
0

TbTb22t

TbTs
expS 2

t

Ts
Ddt2expS 2

Tb

Ts
D J

5
Ts

Tb
FexpS 2

Tb

Ts
D21G11. ~22!

For high noise, many jumps occur within a bit; thusCIO
.N(Tl2Ts)/Tb , where N5Tb /(Tl1Ts) is the ~average!
number of jumps, giving

CIO.
Tl2Ts

Tl1Ts
. ~23!

The plots of Eqs.~22! and ~23!, evaluated using the ex
perimental residence times, are reported in Fig. 10, show
a very good agreement with the experimental data. In Fig
the experimental measurements ofBA are compared with the
analytical expression@Eq. ~19!#. The Kramers timesT6

0,1 are
measured as described in Sec. II. The agreement is exce
above all for a noise higher than 200 mVRMS. Below this
value, the uncertainty in the evaluations of the Kram
times leads to a poor accuracy of the theoretical predictio
The same considerations can be formulated forBS ~see Fig.
3!, where the mentioned effect at low noise is more evide
However, the overall agreement is still very good.

Both correlationsCIO and BA quantify the distance be
tween input and output signals within a bit duration. Wh
CIO uses a continuous range of values, a threshold-ba
decision is used forBA . The result is then averaged over th

e
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whole bit sequence. To draw a link between these two in
cators, let us consider the random variabledIO , defined on a
given input bit as

dIO5
1

Tb
E

0

Tb
dt@xin~ t !2 x̄in#@xout~ t !2 x̄out#. ~24!

dIO measures the cross-correlation on a given input
between input and output. It is positive if the output bit
‘‘right’’ ~i.e., matches the input one!, and negative otherwise
It is easy to see that the correlationCIO is the average ofdIO
over the ensemble of input bits, whileBA is the area of the
normalized distributionQ(dIO) between2` and zero.

In Fig. 11 we show the shapes ofQ(dIO) for low noise
~a!, before resonance~b!, close to resonance~c!, and for high
noise ~d!, obtained from the experimental data. For a lo

FIG. 10. Normalized input-output cross correlation. Dots: e
perimental data. The asymptotic results for low noise@Eq. ~22!,
diamonds# and high noise@Eq. ~23!, squares# are shown using the
experimental Kramers rates for the calculations. The dashed
are guides for the eye.
05111
i-

it

noise level, the distributionQ(dIO) shows two sharp peak
of nearly equal intensities almost, symmetric around 0. T
correlation is then very small, since the two peaks averag
0, while BA is found close to 1/2. As the noise increases,
peaks corresponding to the wrong output bits decrease
the benefit of the other one, and the two peaks broad
Close to resonance, the left peak almost merges with
right one, indicating that the system follows the input s
quence rather well. The distribution is very asymmetr
leading to a strong cross-correlation, and the probability
dIO to be negative is very small, resulting in a smallBA . For
high noise, the distribution tends toward a Gaussian, as
expects from the complete randomization of the system.
center tends slowly toward 0 as the noise increases, exp
ing the slow decrease~increase! of the cross-correlation (BA)
versus noise.

The discussion ofBS behavior is even simpler, and in thi
case the resonance is also the result of two independent
nomena. For low noise, one bit length is not enough to lo
memory of the previous bit state. As the noise is increa
and the residence times shorten, this effect becomes less
portant. With the usual approximationTl@Tb the expression
for BS for low noise is

BS.
1

2
expS 2

Tb

Ts
D . ~25!

For high noise, when the memory effect is negligible, t
probability to obtain the right bit value approachesTs /(Ts
1Tl). According to the Kramers law@17#, this expression
decreases with noise. With respect to the other two ind
tors, a shorter time is sufficient to get rid of the memo
effect ~giving a steeper decrease of the BER!, while for high
noiseBS is higher thanBA .

A significant difference between classical SR and the p
nomenon presented here concerns the possibility of interp
ing the resonance as a time-scale matching. The statis
synchronization in SR is obtained when the average t

-

es
,

FIG. 11. Plot of the normalized distribution
Q(dIO) @see Eq.~24!# for different input noises:
from left to right and top to bottom, 100, 200
500, and 1200 mVrms. The horizontal axis is in
arbitrary units.
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TK(D) between two successive noise-induced transition
comparable with half the modulation periodTV . Therefore,
the approximate SR matching condition reads

2TK~D !.TV . ~26!

In our system, an equivalent condition in fact does n
hold. The characteristic time scale of the input signal is n
Tb . As we discussed, this period must be compared withTs
andTl : a few Ts are necessary in order to lose the memo
of the previous bit; on the other hand,Tl must be long with
respect toTb :

Ts!Tb ,
~27!

Tl@Tb .

In other words, the two conditions~27! define a region for
D where the output well reproduces the input signal. Eve
an optimal value ofD is found, it cannot be considered as
real resonance~or a time-scale matching!, but rather as the
best compromise naturally arising between the two requ
ments. Such an optimal value depends on the choice of
indicator. Moreover, bothTs andTl depend on both the inpu
noise and the signal amplitudeA. A higher value ofA yields
a larger ratioTl /Ts and therefore a wide region ofD where
the input signal is well reproduced, in addition to a bet
value of the indicators.
s

tt

.

ys

nd

05111
is

t

y

if

-
he

r

V. CONCLUSIONS

We have presented an experimental and theoretical an
sis of noise-assisted transmission of binary informat
through a bistable optical system. The phenomenon is a
ticular example of aperiodic stochastic resonance, and in
work the predictions of theoretical models are compa
with sufficiently accurate experimental findings. The ph
nomenon is first analyzed by considering the complete t
evolution of the bistable system, by means of the inp
output correlation. Moreover, we have studied the binary
formation flow by using appropriate indicators. Both analy
cal expressions and numerical simulations are in quantita
agreement with the measured quantities. The analysis of
low- and high-noise limit cases leads to a clear picture of
phenomenon, showing that the ‘‘resonance’’ is more p
cisely described as a crossing region of two independent
cesses, whose effects on the output signal reproduction
monotonic with noise and opposite.
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