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A B S T R A C T

Coupled excitable microlasers have been shown theoretically to sustain saltatory propagation of solitonic-like
excitations and hold good promise for fabrication of advanced and integrated photonic processing circuits.
By studying a model for evanescently coupled excitable microlaser lattices with integrated saturable absorber,
we investigate how pulse interaction can lead to non trivial responses. In particular, we show in a three-port
system that depending on the system parameters and geometry, two counter-propagating pulses from two input
ports can collide and exit or not in a third port, thus giving rise to the not-linearly separable XOR response
function and to universal logic gates.
1. Introduction

Excitability is a nonlinear generic phenomenon that results in an
all-or-nothing response to an input perturbation. Neurons are endowed
with this property [1,2], producing a calibrated pulse only if a certain
excitation threshold is reached. Spatially extended excitable systems
are well known to sustain the propagation of nonlinear waves [3–6].
Among the most well-known examples are excitable electrical waves in
the cardiac tissue [7] and in the chicken retina [8], chemical excitable
waves [9,10] in the spatially extended Belousov–Zhabotinsky (BZ)
reaction and CO oxidation on platinum surfaces [11]. The nonlinear
and collision properties of these waves have motivated the study of
excitable logic in continuous [12–16] or discrete lattices [17,18]. How-
ever, the kinetic of chemical reactions is very slow and it is difficult to
get integrated systems with a small footprint. Photonics technologies
may circumvent these problems offering subnanosecond timescales for
the material recovery times and tens of micrometer scale devices.

Excitable dynamics in optical systems has been studied and demon-
strated since a long time [19,20]. Optical excitable waves have been
predicted in broad area lasers [21] and studied experimentally in
such a system [22] but a clear demonstration remains elusive. More
recently it has been proposed to use lattices of semiconductor excitable
microlasers [23]. These lattices are based on excitable micropillar semi-
conductor lasers [24,25], which are integrated devices with excitable
response in the hundreds of picoseconds range. The propagation of
excitations in chains of coupled excitable microlasers has been studied
with a diffractive [26,27] and a diffusive optical coupling [28,29]. In
a related study, similar waves have been studied in discretely coupled
integrate-and-fire excitatory neurons [30].
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When an excitable pulse is ignited in the lattice, a nonlinear soliton-
like response can propagate in a saltatory manner between excitable
nodes. The properties of this nonlinear propagating pulse are very
interesting for optical computing and in the context of neuromorphic
photonics, with the aim of developing computing optical devices in-
spired by the brain [25,31]. An architecture for an OR gate has been
previously proposed [25], as well as a way to create an AND gate. It
relies on the adjustment of the pumping of specific pillars in the lattice.
Logic gates based on dissipative localized structures (cavity solitons)
have been studied in [32], based on the local interaction between
non-propagative optical coherent structures.

Here, we investigate suitable architectures to produce different logic
gates allowing universal computation. These gates are based on the
peculiar collision and propagation properties of the discrete excitable
waves in micropillar laser lattices. As a matter of fact, we will show
that a change in the coupling coefficient or pumping value in a lattice
producing an OR gate can give rise to a XOR gate. We study the
physics involved in this unexpected and non-trivial phenomenon. The
XOR function is also interesting in a machine learning context as it
implements a non separable problem and is often used as a test-bed for
simple neural networks [33–35]. We demonstrate other logical gates,
like the universal gates NAND and NOR, that can be cascaded to create
any logical function.

2. Model

The architecture of a logical gate is described in Fig. 1. It is the asso-
ciation of 𝑁 (even) excitable micropillar lasers [36]. The two inputs of
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Fig. 1. Architecture of a logical gate: each micropillar has a few microns diameter,
and is composed of a cavity formed by a top and a bottom Bragg mirror with an active
medium (red) composed of gain and saturable absorber quantum wells (see [24] for
details). Input pulses are sent at each extremities (A and B) of a lattice of coupled
micropillars with a coupling factor 𝜅x. The output pillar (C) is coupled to the middle
of the chain with a coupling factor 𝜅y . (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

the logical gates are at both ends of the lattice and the input pulses
sent to them are represented as red beams. The coupling factor 𝜅𝑥
between pillars is identical for all the chain, except for the output pillar
connected to the micropillar at the middle of the chain with a coupling
constant 𝜅𝑦. The excitable micropillar laser emits perpendicularly to the
surface.

The propagation of excitable pulses in this architecture can be
simulated with a model of coupled ODEs [23]:

𝐸̇𝑗 =
[

(1 − 𝑖𝛼)𝐺𝑗 − (1 − 𝑖𝛽)𝑄𝑗 − 1
]

𝐸𝑗+

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑖𝜅𝑥𝐸𝑗−1 if 1 < 𝑗 ≤ 𝑁 − 1
+ 𝑖𝜅𝑥𝐸𝑗+1 if 1 ≤ 𝑗 < 𝑁 − 1
+ 𝑖𝜅𝑦𝐸𝑁 if 𝑗 = 𝑁∕2
+ 𝑖𝜅𝑦𝐸𝑁∕2 if 𝑗 = 𝑁,

(2.1a)

𝐺̇𝑗 = 𝑏1
[

𝜇1 − 𝐺𝑗 (1 + |𝐸𝑗 |
2)
]

, (2.1b)

𝑄̇𝑗 = 𝑏2
[

𝜇2 −𝑄𝑗 (1 + 𝑠|𝐸𝑗 |
2)
]

(2.1c)

with 𝐸𝑗 , 𝐺𝑗 , 𝑄𝑗 scaled adimensional variables: 𝐸𝑗 representing the
electric field envelope in the 𝑗th pillar, 𝐺𝑗 the carrier density in the gain
medium and 𝑄𝑗 the carrier density in the saturable absorber medium.
The parameters are 𝜇1 the pump, 𝜇2 the linear absorption equal to 2,
𝜅x the coupling factor between the pillars of the chain along the long
axis, 𝜅y the coupling factor of the output pillar (Nth pillar) with the
middle of the chain, the gain and the carrier recombination rates 𝑏1
and 𝑏2 both equal to 0.002, the phase–amplitude coupling factors 𝛼 and
𝛽 respectively equal to 2 and 0, and 𝑠 the saturation coefficient taken
equal to 10. Time is rescaled to the electric-field decay time, which is
on the order of a few picoseconds.

The initial conditions are given by:

𝐸𝑗 (𝑡 = 0) =
√

𝐼𝑠𝑠 × 𝑒𝑖𝜙𝑗 +
√

I0j
𝐺𝑗 (𝑡 = 0) = 𝜇1
𝑄𝑗 (𝑡 = 0) = 𝜇2

(2.2)

with Iss = 10−5, a small intensity due to spontaneous emission, 𝜙𝑗 a
random phase and I0j the input intensity, equal to zero except for the
extremes pillars when there is an input (𝐴 = 1 for pillar 1 and 𝐵 = 1
for pillar N − 1).

3. Propagation and collision

Each micropillar modeled with the previous parameters has an
excitable response. It is therefore capable of emitting a pulse if the
2

Fig. 2. Numerical simulations of Eqs. (2.1) when one of the edges is excited. (a)
Spatiotemporal evolution of the pulse propagation. Pink, green, yellow, and red solid
lines represents the response of 𝐷 − 2, 𝐷 − 1, 𝐷, and 𝐶 cavities, respectively. Region
in yellow (light blue) correspond the area where there is (there is no) an excitable
response in C as a function of the coupling parameters (𝜅𝑥 , 𝜅𝑦). (b) Intensity profile (in
C) as a function of time when 𝜅𝑥 = 0.06, 𝜅𝑦 = 0.09. (c) Intensity profiles measured in C
when 𝜅𝑦 = 0.09 (orange solid line) and 𝜅𝑦 = 0.095 (green solid line) with 𝜅𝑥 = 0.3 in both
cases. The red star (⋆) and the green diamond (⋄) indicates that these intensity profiles
correspond to two points in the (𝜅𝑥 , 𝜅𝑦)-plane of the inset in panel (a). (c) Typical
intensity profile of an excitable response with (𝜅𝑥 = 0.2 and 𝜅𝑥 = 0.115). For all these
simulations 𝜇1 = 2.75, 𝛼 = 2, 𝛽 = 0, 𝑏1 = 𝑏2 = 0.002, 𝜇2 = 2, and 𝑠 = 10. Initialization
of the system: 𝐼𝑠𝑠 , 𝜙𝑗 = 0, 𝐼0𝐴 = 10 (coherent perturbation), and 𝑗 = 1,… , 201. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 3. Two different architectures, with input pillars A and B and output pillar C,
and with parameters: 𝜇g = 2.8, 𝜅x = 0.1 and 𝜅y = 0.1 in panel (a), 𝜅y = 0.07 in panel
(b). The colors of the individual pillars correspond to the curves shown beside, where
intensity versus time is plotted. Architecture represented in (a) corresponds to an OR
gate, with a constructive pulse collision. Architecture represented in (b) behaves as a
XOR gate, with inhibitory pulse collision. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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initial perturbation goes beyond a certain threshold, the excitable
threshold, as shown theoretically in Refs. [37,38]. Excitability in such
a micropillar has also been reported in experiment [24], including the
demonstration of existence of refractory periods, spike latency [39],
and temporal summation [40]. When the micropillars are coupled
through the evanescent tail of their electric-field mode and one of the
cavities is excited, a pulse propagating in a saltatory manner can be
observed . The existence of a response in a chain of micropillars not
only depends on the initial perturbation but also on the pump and on
the coupling strength [25,26]. Indeed, in case of small coupling values,
the propagation is triggered when the pump 𝜇1 also goes beyond a
certain threshold that decreases almost linearly with coupling. Fig. 2
corresponds to numerical simulations of Eqs. (2.1) and shows how
is the pulse propagation along the cavities when the first cavity (A)
is perturbed coherently with light. Let us now consider, in the same
figure, an output cavity (C) located in the middle of the main chain and
colored in red. In particular, we use cavity C to study the properties of
the propagation and interaction of pulses as a function of the coupling
strength (between cavity C and the main chain). From the inset of
Fig. 2(a), one can distinguish two main areas (light blue and yellow)
depending on the coupling values. The yellow and light blue areas
show the combination of (𝜅𝑥, 𝜅𝑦) for which there is and there is no
propagation in cavity C, respectively. The region in which there is
no propagation is split into two zones, 𝑖 and 𝑖𝑖. The no propagation
phenomenon has two different natures. In case of 𝑖, the pulse cannot
propagate because for the pump value in the main chain 𝜇1 = 2.75, the
coherent perturbation is below the excitability threshold [26]. Indeed,
the intensity profile in cavity C is zero, see Fig. 2(b). Contrarily to
region 𝑖, in area 𝑖𝑖 the pump is not playing a crucial role because it
is high enough for the couplings (𝜅𝑥 and 𝜅𝑦), i.e., there is always a
pulse propagating over the main chain. In spite of the propagation,
the evanescent tail of electric field coming from cavity (D) perturbs
cavity (C) but is not capable to trigger an excitable response in it. In
this situation, one measures in C an intensity whose maximum value is
smaller [Fig. 2(c)] than the typical response [Fig. 2(d)]. Note that for a
fixed value of 𝜅𝑥, the output peak intensity measured in C increases as
the coupling strength 𝜅𝑦 increases, as can be seen in the pulse profiles in
Fig. 2(c). One then expect the evanescent coupling to overpass a certain
threshold that depends on the coupling values between the main chain
and the output micropillar.

The dynamics becomes richer when the main chain is simultane-
ously perturbed at the edges, i.e., at 𝑗 = 1 (A) and 𝑗 = 𝑁 − 1 (B)
(see Eqs. (2.2) for the initialization of the system). Depending on the
collision between the pulses in the cavity, here called D, located at
middle of the chain, and on the coupling value 𝜅𝑦, the propagation in
cavity C can be suppressed. Fig. 3 shows the spatiotemporal evolution
of the pulses when they collide and interact ‘‘constructively’’ so that the
cavity C has an excitable response (see panel (a) of the figure) or when
the collision annihilates the excitable response in C [see panel (b)].

To understand the collision, we study the propagation throughout
the main chain when the two cavities at the edges (A,B) are excited, see
Fig. 4(a). For this purpose we have conducted simulations using the
fourth-order Runge–Kutta algorithm and considered 201 micropillars
to avoid any boundary or finite-size effect. In particular, we focus
on the colored cavities next to C in Fig. 4(a). From Fig. 4(b) one
observes that the intensity profile of cavities 𝐷 − 3 (black line) and
𝐷−2 (pink line) are equal. The changes in the intensity profile become
observable as the counterpropagative pulses reach cavity C. Indeed, the
evanescent interaction makes the pulses smaller at cavity 𝐷 − 1 (green
line) since, almost at the same time, cavity D is excited. Moreover, from
the inset of the same figure, it can be observed how the right side of
the pulses becomes monotonous as the propagation reaches the middle
of the micropillar chain. Note that the collision of the evanescent tail
of electric field at cavities 𝐷−1 makes the response in cavity D almost
symmetric. The latter reveals that almost all the dynamic due to the
collision is concentrated in cavity D.
3

Fig. 4. Numerical simulations of Eqs. (2.1) when the edges of the main chain, i.e., A
and B, are excited. (a) Spatiotemporal evolution of the pulse propagation. Black, pink,
green, yellow, and red solid lines represents the response of 𝐷 − 3, 𝐷 − 2, 𝐷 − 1, 𝐷,
and 𝐶 cavities, respectively. (b) Intensity profile 𝐷 − 3, 𝐷 − 2, 𝐷 − 1, 𝐷 as a function
of time when 𝜅𝑥 = 0.2 and 𝜅𝑦 = 0.114. (c) Intensity profiles measured in D and C when
𝜅𝑥 = 0.2 and 𝜅𝑦 = 0.114. The inset corresponds to an amplification of the same figure.
(d) 𝐺−𝐼-phase space of the output cavity when 𝜅𝑦 = 0.114 (red dots, C) and 𝜅𝑦 = 0.115
(red solid line, C’). The inset corresponds to a zoom of the same figure. For all these
simulations 𝜇1 = 2.75, 𝛼 = 2, 𝛽 = 0. Initialization of the system: 𝐼𝑠𝑠 , 𝜙𝑗 = 0, 𝐼0𝐴 = 10
(coherent perturbation), 𝛾 = 0.002, 𝜇2 = 2, and 𝑗 = 1,… , 201. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 1
The truth table for 8 logic gates: FALSE, logical conjunction AND, logical disjunction
OR, exclusive disjunction XOR, logical NOR, logical NAND, logical biconditional XNOR
and tautology TRUE.

(A, B) FALSE AND OR XOR

(1, 1) 0 1 1 0
(1, 0) 0 0 1 1
(0, 1) 0 0 1 1
(0, 0) 0 0 0 0

(A, B) NOR NAND XNOR TRUE

(1, 1) 0 0 1 1
(1, 0) 0 1 0 1
(0, 1) 0 1 0 1
(0, 0) 1 1 1 1

Let us remind that the pulse propagation occurs due to the per-
turbation made at one (or two) of the edges. This perturbation may
generate an excitable response which may propagate to the next cavity
by means of the evanescent tails of the electric field intensity. Note that
this mechanism also holds for the interaction between the main chain
and the output cavity (C). We then explore this evanescent interaction
between cavity D and C when there is no output in C, as it is shown
in Fig. 4(c). From the inset of this figure one can observe that at the
same time the pulse in cavity D reaches its higher value, the evanescent
tail of the electric field perturbs cavity C, however this perturbation is
not enough to excite it. Fig. 4(d) illustrates the main features of this
excitable system [37,38]. In particular, the red dots account for the
situation in which there is an excitable response with 𝜅𝑥 = 0.2 and
𝜅𝑦 = 0.115 whereas the solid red line corresponds to the no propagation
situation with 𝜅𝑥 = 0.2 and 𝜅𝑦 = 0.114. It can be observed from the
inset of this figure that, for the same perturbation Eq. (2.2) with slightly
different 𝜅𝑦, the trajectory does a long (the pulse) or short excursion in
the phase space before it returns to the stable state (𝐺 = 2.75, 𝐼 = 0).
𝐶 𝐶
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Fig. 5. Nature of the logical gate for different parameters: uniform pumping but
different 𝜅x and 𝜅y for (b) and (c) [schematic in (a)] uniform coupling (𝜅x = 0.075)
but different pumping for cavity C [in (e), schematic in (d)]. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Throughout this section, we have stated that in order to have pulse
propagation along the entire micropillar lattice, the system must be
initialized in such a way that the parameters (pump and coupling
strength) go beyond of certain value. The latter holds independently
of whether the propagation is triggered in one (A) or the two (A o
B) micropillar edges. It is worth to note that the interaction and the
subsequent collision of pulses make this system capable to compute
Boolean functions as is shown in the next sections.

4. Logical gates

The architecture presented in Fig. 1 can be used to realize logical
gates. This is based on the results demonstrated in the previous section,
where a small change of the coupling factor 𝜅y can radically change
the nature of the collision and subsequently of the signal in cavity
C. Fig. 3 shows the evolution of the electric-field intensity following
numerical integration of the model (Eqs. (2.1)) for two different gates,
using this phenomenon. In the first one the coupling factors are all
equal with 𝜅x = 0.1 and 𝜅y = 0.1. We can see in Fig. 3(a) that when
two input perturbations (A = 1 and B = 1) are present, two counter-
propagating pulses propagate in the chain from both sides, join in the
middle micropillar, and reach the output pillar. In the same way, the
gate produces a signal if only one perturbation is sent, and of course
nothing when no perturbation are sent (results not shown). This is the
behavior of an OR gate (see Table 1).

The second architecture, we describe in Fig. 3 uses the behavior
described in Section 3. Thus, it differs from the first one only by
the coupling factor 𝜅y for the output pillar, now at 0.07. That is, we
increase the excitable threshold of the output micropillar. In practice,
this is obtained by a larger center to center distance between the
coupled pillars. In this case the propagation of two perturbations [cf.
Fig. 3(b)] simultaneously arriving at the middle pillar do not produce
an output pulse at the output pillar. However, a single perturbation sent
at one of the ends of the lattice can elicit a response at the output pillar,
that is can overcome the increase of the excitable threshold. This is the
behavior of a XOR gate (see Table 1).
4

The study of the influence of different factors on the output state
of the gate is presented in Fig. 5. The Fig. 5(b) and (c) show the
gate resulting from the pulse collision in the (𝜅𝑥, 𝜅𝑦) plane for different
pumping values. We can see that the area of parameters for the OR
behavior is dominant, and increases with the pump 𝜇1. Small zones for
the AND gate appear at the limit with FALSE areas. These are limit
cases when the coupling is so high that the propagation deviates from
the pure saltatory propagation mode [26]. Most interestingly is the
apparition of a large XOR zone where 𝜅y is smaller to 𝜅x. This XOR zone
moves to smaller 𝜅y when the pumping increases [26]. Furthermore,
we can obtain XOR gates by tuning the pumping of the output pillar
alone, for a fixed coupling constant throughout the lattice as shown in
Fig. 5(e). We see that we can also find a large zone of parameters for the
XOR gate, without changing the architecture of the gate. This method
offers a flexible way to tune the type of gate, since the coupling constant
is fixed at the fabrication stage but the pump can be tuned during the
experiment.

5. Universal gates

To complete the study, we explore the possibility to do universal
gates, with which any logical operation is possible. We study in particu-
lar the NAND and NOR gates (see Table 1). These two logical operations
bring another difficulty, as they require the generation of a signal
without any perturbation (A = B = 0 and C = 1). We circumvent this
difficulty by adding a pillar to the gate. This particular pillar is coupled
to the middle of the chain and pumped over the self-pulsing threshold
(𝜇th = 3), for a certain amount of time. Thus, this pillar produces pulses
even with no input. Here, this pillar is pumped at (𝜇g2 = 3.15), which
results to a self-pulsing regime with a very long period, far higher than
the simulation time. Thus, we see only one pulse produced by this
pillar. The Fig. 6 presents the architecture of a NAND gate achieved
with this solution. To achieve the NAND behavior (always ‘1’ except
when the two inputs are ‘1’), we keep the parameters used for the XOR
gate, and we add the overpumped pillar. Then, if the two inputs are
activated, the XOR behavior comes into play and annihilates the output
signal in C [Fig. 6(a)].

A study of the influence of the parameters has also been done for
this new architecture. It is shown in Fig. 7, where 𝜇1 and 𝜅y vary. We
can see zones of NAND and NOR behavior at the frontier between the
FALSE (always ‘0’) and the TRUE (always ‘1’). We observe a linear
dependence with the coupling 𝜅y and the pumping 𝜇1. This is due to
the fact that these two parameters influence the propagation speed.
Actually, the speed is a critical factor in the determination of the nature
of the gate, because it relies on the synchronization of the pulses: for
changing a NAND gate to a NOR gate (when 𝐴 = 1 and 𝐵 = 0, 𝐶 = 0
instead of 1), we need to decrease a little the speed of the propagation
in the main chain, so that when it arrives to the pillar D, it collides with
the pulse of the overpumped pillar, giving no output. If we decrease
even more the speed, the propagating pulse does not have time to reach
the output before the end of the simulation, giving a FALSE. On the
other hand, if we increase the speed, the XOR behavior is suppressed,
so the gate always gives an output (TRUE). Indeed, the synchronization
of the pulses relies also on the pump 𝜇g2 because it determines the time
when its pulse is produced. So, the map showed Fig. 7 will be slightly
different with another 𝜇g2.

Consequently, this new architecture can produce all the logical gates
described in Table 1.

6. Conclusion

In this paper, we propose architectures for realizing photonic logical
gates, based on pulse collisions in microlaser lattices that can sustain
solitonic-like excitation propagation. We have demonstrated that de-
pending on the system parameters (coupling or pumping) we can get
an OR gate or a XOR gate. Actually, there exists a sizeable range of
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Fig. 6. NAND gate : (a) architecture with 𝜇g = 2.7, 𝜅x = 0.15 and 𝜅y = 0.12. The overpumped pillar (in gray) is pumped at 𝜇g2 = 3.15. (b) Propagation in the gate when the two
inputs are equal to 0. (c) With one input equal to 1. (d) The two input equal to 0. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Fig. 7. Nature of the logical gate with an overpumped cavity at 𝜇g2 = 3.15, for different
𝜇1 and 𝜅y , with 𝜅x = 0.2. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

parameters where two counterpropagative pulses annihilate the signal
in the output cavity, whereas only one input pulse does not. These ar-
chitectures are flexible since one can tune either the pump or coupling
strength to realize a specific gate. Moreover, we extended this study to
the design of universal gates, which can produce any logical function
and can be cascaded. Besides excitable logic, these demonstrations open
interesting prospects for the experimental realization of more complex
on-chip computing tasks taking advantage of the fast timescales and
small system footprint, e.g. for spike time pattern recognition at high
speed. On a more fundamental viewpoint, this system could also form
an interesting photonic platform to study the propagation of nonlin-
ear excitations in more complex lattice architectures or to investigate
topological and non hermitian lattices [41].
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