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Pulse-timing symmetry breaking in an excitable optical system with delay
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Excitable systems with delayed feedback are important in areas from biology to neuroscience and optics.
They sustain multistable pulsing regimes with different numbers of equidistant pulses in the feedback loop.
Experimentally and theoretically, we report on the pulse-timing symmetry breaking of these regimes in an optical
system. A bifurcation analysis unveils that this originates in a resonance phenomenon and that symmetry-broken
states are stable in large regions of the parameter space. These results have impact in photonics for, e.g., optical

computing and versatile sources of optical pulses.
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I. INTRODUCTION

Time periodic regular pulsing regimes can emerge in
many dissipative physical systems with delayed feedback
[1,2]. This phenomenon is encountered in various fields, from
neurosciences [3,4] to optics and opto-electronics [5—8], ecol-
ogy [9], and chemistry [10,11]. Typically, these systems are
multistable, with several coexisting regular periodic regimes
[12,13]. Multistability has been shown to be of particular
interest for all-optical processing capabilities, e.g., associative
memories [14-16].

Here we consider an excitable optical system with delayed
feedback, namely, a micropillar laser with integrated saturable
absorber and delayed optical feedback. In the excitable regime
and for a sufficiently large delay time, the system regenerates
its own output at regular time intervals [17-20]: if a short
duration perturbation with sufficiently large amplitude is sent
as an input, the system emits a light pulse which is re-injected
by the feedback loop after a delay time 7. If the losses in
the feedback loop are sufficiently low, the re-injected pulse is
regenerated in the excitable medium. As the process repeats,
this results in a periodic pulsing regime with period T slightly
larger than t due to the finite response time of the excitable
medium.

When several perturbations are sent sequentially, the tim-
ing structure of the regenerated pulses in the feedback loop
persists in the short term. This can lead to interesting appli-
cations such as optical buffer memories [17-20]. However, in
optics, most of the excitable or pulsing systems with delayed
feedback [16-18,21] show a convergence in the long term
to self-pulsing regimes consisting of equidistant pulses in
the feedback loop. In a vertical cavity surface emitting laser
(VCSEL) system subject to long opto-electronic feedback,
the repulsion of two pulses has been reported, leading to a
nonequidistant pulsing regime [22].

We report here on a pulse-timing symmetry-breaking phe-
nomenon, where some symmetric regimes destabilize and
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the long-term stable dynamics consists of coexisting equidis-
tant and nonequidistant pulses in the feedback loop. This
is observed experimentally and analyzed in a mathematical
model, which takes the form of a system of three coupled
delay-differential equations (DDEs). A bifurcation analysis
unveils that the observed nonequidistant pulsing dynamics re-
sults from destabilising bifurcations of the equidistant pulsing
solutions; these occur when the delay 7 is increased, provided
that the recombination rate of carriers in the gain medium is
faster than the one of the saturable absorber. We show that the
emergence of stable pulsing patterns with n nonequidistant
pulses is generic in the system and arises from symmetry
breaking due to locked dynamics on invariant tori. Two stable
nonequidistant pulses in the feedback loop emerge from a
period-doubling bifurcation of the equidistant two-pulse solu-
tion, which is close to a 1:2 strong resonance. Because of the
amplitude-timing coupling in the excitable system [23,24], the
relative timings of the pulses are very strongly affected. This
is responsible for the observed immediate symmetry breaking
of pulse timings. Pulsing patterns with n equidistant pulses
per feedback loop with n > 3 destabilize in torus bifurca-
tions that are close to 1:n resonance. This results in large
resonance tongues, i.e., regions of the parameter space where
the dynamics on the torus is locked. Due to the amplitude-
timing coupling, these locked 1:#n periodic orbits correspond
here to higher-order symmetry-broken, nonequidistant puls-
ing regimes. We show that nonequidistant and equidistant
pulsing regimes can coexist, thus leading to a much increased
level of multistability of pulsing patterns.

II. MODEL EQUATIONS

We consider the Yamada equations with incoherent de-
layed feedback [25,26], a model of a semiconductor laser
written in the form of three DDEs for the dimensionless gain
G, absorption Q, and intracavity intensity /:

G=ys(A—G—GI); O=yoB—Q—s0l);
I=(G—-0—-DI+«lt—1). (1)
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FIG. 1. (a) Bifurcation diagram of (1), showing the pulse inten-
sity I, with respect to 7, with the number of pulses per feedback
loop along each stable periodic solution branch. (b1) Enlargement of
the framed area in (a), with further enlargments around point (b2)
T; and (b3) S;. Stable equidistant (£) and nonequidistant (V) pulse
solutions are represented in dark and light blue, respectively, and
unstable £ and N solutions in dark and light orange, respectively. The
dots indicate Hopf (H), torus (T'), period doubling (P), saddle-node
(8), and homoclinic (L) bifurcations. (c1)—(c4) Floquet multipliers at
points P, T3, Ty, and Ts, with critical multipliers highlighted in red.

The time variables are rescaled with respect to the cavity
photon lifetime [27]. Here, A is the pump parameter, B is
the nonsaturable absorption, s is the scaled saturation param-
eter, yg and yp are the recombination rates of the carriers
in the gain and absorber media, respectively, and « and
T are the feedback strength and delay, respectively. Unless
stated otherwise, we consider the following parameter values:
A=2,B=2,y;=0.01, yp =0.055, s =10, and ¥« = 0.2.
The delay time t is considered as a bifurcation parameter.
This model has been shown to produce rich and complex
dynamics [26,28], and to describe accurately the dynamics
of an excitable micropillar laser with integrated saturable ab-
sorber subject to delayed optical feedback [16,20]. We study
the DDE (1) here in a parameter regime that has not been
considered before, namely, in the situation when y; is smaller
than yy so that the carriers of the gain G recombine faster than
those of the absorbtion Q.

III. BIFURCATION ANALYSIS

Figure 1(a) shows the one-parameter bifurcation diagram
of system (1) in the delay time t, where solutions are rep-
resented by their maximum value I, of intensity /. When
T increases from zero, successive Hopf bifurcations (H) are

encountered, from which several branches of coexisting peri-
odic solutions emerge. Far from the Hopf bifurcations, these
solutions correspond to the periodic emission of short light
pulses, with periods close to submultiples of the delay [28]
and with a fixed number of equidistant pulses in the feedback
loop, as indicated in Fig. 1(a). The fundamental solution with
one pulse per feedback loop appears at T = 51.7 and is stable
for any larger value of t. On the other hand, all the n-pulses
solutions with n > 2 emerge unstably from a Hopf bifurca-
tion, subsequently stabilize in a torus bifurcation (7') when 7
increases and finally destabilize through a second bifurcation.
All these solutions coexist with the zero-intensity equilibrium
solution (i.e., the nonlasing solution), which is stable over the
entire range of 7 in Fig. 1(a).

Figure 1(b) presents the enlargements of Fig. 1(a) near the
destabilizing bifurcations of the equidistant pulsing regimes
with two to five pulses (points P, T3, T4, and Ts, respectively),
and Fig. 1(c) show the Floquet multipliers at these points. The
two-pulse solution destabilizes at point P through a period-
doubling bifurcation, with one Floquet multiplier crossing the
unit circle at —1 [Fig. 1(c1)]. This bifurcation is close to a
1:2 resonance point, where two Floquet multipliers are equal
to —1 [29]. The three-, four-, and five-pulse solutions desta-
bilize at torus bifurcations 73, T4, and Ts, respectively, where
two complex conjugate Floquet multipliers cross the unit cir-
cle. These critical Floquet multipliers are extremely close to
e*27/"showing that the torus bifurcations are close to 1:n
resonance points with n = 3, 4, and 5, respectively [see Figs.
1(c2) to 1(c4)]. As a consequence, instead of the quasiperiodic
regime one would expect after the bifurcation, one observes
locked periodic solutions winding n times around the torus.
These emerge at the saddle-node bifurcations S,. As will be
discussed below, the new locked pulsing regimes correspond
to nonequisitant pulsing patterns. From a physical point of
view, this means that critical values of the delay exist for
which the equidistant periodic solutions lose stability in favor
of nonequidistant pulsing regimes.

The destabilization of the two-pulse periodic regime
at point P leads to a period-doubled regime with two
nonequidistant pulses per feedback loop and thus appears
as a pulse-timing symmetry broken state. This is illustrated
in Fig. 2(a), which shows the evolution of the amplitudes
and relative timings of pulses with respect to 7, along the
branches of solutions corresponding to two equidistant and
two nonequidistant pulses. After the period doubling bifur-
cation at T = 472, one observes both a splitting of the pulse
amplitudes in Fig. 2(al) (as expected), but also a strong
splitting or symmetry breaking of the relative pulse timings
[Fig. 2(a2)], which is due to the strong time-amplitude cou-
pling of the system [16,30].

We use numerical simulations to further assess how the
regime with two nonequidistant pulses is accessed. Fig-
ure 2(b) shows, for t = 1000, the long-term dynamics of
system (1) when it is initially on the (unstable) equidistant
two-pulse solution and subsequently slightly perturbed by
increasing the gain variable G. The system slowly converges
to one of the two possible nonequidistant stable pulsing pat-
terns: the first pulse timing interval decreases [Fig. 2(b2)]
and the second pulse (highlighted in gray) converges towards
a low amplitude state [Fig. 2(b1)]. When a different initial
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FIG. 2. (al) Maximum /, of pulse intensity and (a2) relative
interpule timings ¢, along the branches of two equidistant and two
nonequidistant pulses, with respect to 7. Stable and unstable solu-
tions are represented in blue and red, respectively. (b) Simulation
of (1) for r = 1000 [gray lines in panel (a)] with initial condition
very near the (unstable) two-pulse solution, showing the long-term
evolution of (bl) I, and of (b2) #,. The subpanels in (b1) show the in-
tensity time series during the two first and two last roundtrips through
the feedback loop; the dots and arrows indicate the amplitudes and
relative timings as represented in (b1) and (b2), respectively.

perturbation is applied by depleting G slightly (not shown
here), the phase-shifted, symmetric version of this solution
is obtained, with the first (green) and second (gray) pulses
converging to the low-amplitude and high-amplitude states,
respectively. Although this leads seemingly to the same long-
term dynamics, both of these different states occur, one being
a phase-shifted version of the other. We also point out that the
convergence is very slow and occurs over several thousand of
delay times, showing that the stable nonequidistant solutions
are only weakly attracting.

The bifurcation mechanism leading to the emergence of
nonequidistant pulsing regimes with more than three pulses
is slightly different. As shown in Fig. 1(b1), a pair of (stable
or unstable) periodic solutions emerges from a saddle-node bi-
furcation, for example, at T = 663 for n = 3. This bifurcation
forms the boundary of the 1:n resonance tongue associated
with the destabilizing torus bifurcation of the n-pulse solution.
The emerging periodic solutions have a period close to ,

compared to the period close to 7/n of the n-pulse solution
undergoing the torus bifurcation. Here the stable 1:n locked
periodic solution corresponds to a pulsing regime with n
nonequidistant pulses of different amplitude in the feedback
loop. As such, the 1:n resonance tongues are identified here as
the stability regions of nonequidistant pulsing solutions. Their
emergence leads to a rapidly increasing level of multistability.

Figure 3(a) shows the intensity profiles of the coexisting
stable periodic solutions for T = 1000. Here the nonequidis-
tant two-, three-, four-, and five-pulse solutions [Figs. 3(a2) to
3(a5)] coexist with the stable one-pulse solution [Fig. 3(al)],
but also with the stable solutions with five, six, and seven
equidistant pulses in the feedback loop [Figs. 3(a5) to 3(a7)].
Overall, when 7 is increased, more and more of the equidistant
pulsing regimes become unstable, while more and more stable
periodic solutions with nonequidistant pulses in the feedback
loop appear. Typically, for sufficiently large 7, solutions with
lower numbers of (at least two) nonequidistant pulses coexist
with solutions with larger numbers of equidistant pulses. In
Fig. 3, all the periodic solutions with one to seven pulses per
feedback loop coexist, but the ones with two to five pulses
already underwent the resonance tongue transition and, thus,
correspond to nonequidistant pulsing patterns.

Figure 3(b) presents the regions of stability in the
(7, k)-plane of feedback parameters of the different pulsing
regimes with one up to eight (equidistant and nonequidistant)
pulses per feedback loop. Here the regions of stability of
the nonequidistant pulsing solutions are resonance tongues
bounded by saddle-node bifurcations. The respective stability
regions of both types of solutions extend over large areas
of the (7, x) parameter plane. Moreover, they show a large
degree of overlap, which is why we show them in individual
panels [Figs. 3(bl) to 3(b8)] for one up to eight pulses per
feedback loop. This represents the high degree of multistabil-
ity between all the different solutions represented in Fig. 3(a);
indeed, the long-term convergence to one or the other pulsing
solution depends on the chosen initial conditions. Interest-
ingly, for n > 3 both the solutions with n equidistant pulses
and with n non-equidistant pulses may coexist and be stable
for the same parameter values. As shown in Fig. 1(b1), this
results from the fact that the 1:n resonance tongues are entered
(at points S,,) slightly before the n-pulse solutions destabilize
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FIG. 3. (a) Intensity profiles of coexisting periodic solutions of (1), for ¢ = 1000 and « = 0.2. (b) Regions of stability, in the (z, x)-plane
of feedback parameters, of the families of equidistant (E£') and nonequidistant (N) periodic solutions with one to eight pulses per feedback loop.
The number of pulses is indicated in the colored regions, and the star indicates the parameter point (7, k) = (1000, 0.2) of the time series in

panels (a).
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FIG. 4. Schematic of the experimental setup showing the op-
tically pumped excitable micropillar laser with delayed optical
feedback from an external mirror. DM: Dichroic mirror; BS: Beam
splitter with 70/30 power split between reflected and transmitted
path; MO: Microscope objective; APD: Avalanche photodiode; L:
Lens with f =5 cm, M: High reflectivity feedback mirror; BD:
Beam dump; pPillar: Micropillar laser; t: External cavity round trip
time.

at torus bifurcation points 7,,. Hence, in these ranges of t,
depending on the initial condition, one observes a pattern with
n either equidistant or nonequidistant pulses. In particular, in
Fig. 3(a5) both the solutions with five equidistant and five
nonequidistant pulses coexist for the considered values of the
parameters; see also Fig. 3(b5).

IV. EXPERIMENTAL REALIZATION

We compare the results of the bifurcation analysis with ex-
perimental measurements of an excitable micropillar laser. It
consists of two gain and one saturable absorber (SA) quantum
wells [31,32], is optically pumped with a cw laser at 800 nm
and emits light at a wavelength around 980 nm. The micropil-
lar has a vertical microcavity structure with two optimized
multilayer semiconductor mirrors [31], a 2A cavity thickness
and a 5 um diameter. It is coated with a 2 um thick SiN layer
for better heat management and protection from oxidation.
The output light from the micropillar is split using a R/T =
70/30 beamsplitter (BS). The transmitted part is detected with
a 5 GHz bandwidth avalanche photodiode (APD), amplified
by a large bandwidth (18 GHz) RF amplifier and analyzed
with a 13 GHz oscilloscope. The reflected part is directed into
an external cavity, closed by a high-reflectivity mirror (M)
after focusing with a 5 cm focal length lens, which provides
a delay 7 on the order of 10 ns, and is then reinjected into
the micropillar laser. This delayed optical feedback results
in a 10% reduction of the laser threshold. The experimental
setup is sketched in Fig. 4 and it is similar to the one used in
[20]. The micropillar laser is perturbed by short optical per-
turbations of 80 ps duration from a mode-locked Ti:Sa laser
emitting around 800 nm. The micropillar laser with delayed
optical feedback is pumped below the self-pulsing threshold.
When the feedback strength is small, the system is in the
excitable regime [33]: the steady state intensity / is zero, but
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FIG. 5. Experimental intensity pulse trains shortly after (al) two
and (bl) three external perturbations, and after a large number
of roundtrips in the external cavity with associated calibration of
timings between the respective (a2) two and (b2) three sustained
pulses; colored arrows indicate the interpulse timings as represented
in Fig. 6. The feedback delay is 8.2 ns.

a single high-amplitude, short pulse of light can be emitted
in response to an external perturbation of sufficient amplitude
[27,34]. If the feedback strength is large enough, an excitable
pulse is regenerated when it is reinjected by the delay loop
after the delay 7, thus resulting in the regular emission of light
pulses at a period close to T [19,20].

In system (1) the ratio of the recombination rates y; and
vo of the gain and SA media, respectively, plays a crucial
role in the pulsing dynamics [23,35,36]. In particular, the
pulse-timing symmetry breaking is observed only for a faster
gain recombination, that is, for y; > yp. Experimentally, this
unusual parameter regime can be accessed by selecting a
suitable micropillar laser (from many on the same chip) by
taking advantage of the spread of physical parameters in the
course of the nanofabrication process.

Figure 5 shows intensity time traces generated by two and
three external perturbations. We observe, shortly after they
have been triggered by almost equally spaced perturbations,
that the regenerated pulses are almost equidistant in the feed-
back cavity [Figs. 5(al) and 5(b1)]. The pulses are sustained
by the system effectively as long as the experiment is running,
meaning that their number in the feedback cavity remains
unchanged. In the long term, however, the timings between
consecutive pulses calibrate to a nonequidistant pattern [Figs.
5(a2) and 5(b2)], showing clearly that the equidistant pulsing
solution is not stable.

This is illustrated more clearly in Fig. 6, which shows
the evolution of relative pulse timings of the experimental
pulse trains (as indicated by the arrows in Fig. 5) over several
hundreds of roundtrips in the feedback loop, in the same
representation as in Fig. 2(b2). The experimental results in
Fig. 6 are obtained for identical parameters but different
initial conditions. In Figs. 6(a) and 6(b), the microlaser is
started thanks to suitable external perturbations, close to the
regimes with two and three equidistant pulses, respectively.
We observe that the pulse-timing information is preserved in
the short term [16,20]. On the other hand, in the long term,
the system slowly converges towards nonequidistant pulsing
patterns with well-defined and different interpulse relative
timings. These interpulse timings then stay very stable over
a large number of roundtrips. It was not possible to monitor
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FIG. 6. Evolution over the roundtrip number of the relative in-
terpulse timing ¢, (as shown by arrows in Fig. 5) of experimental
pulse trains following (a) two and (b) three external perturbations, for
a feedback delay of T = 8.2 ns: just after the external perturbation
[panels (1)], during the convergence towards nonequidistant pulsing
patterns [panels (2)], and in the long-term [panels (3)].

the amplitude difference in the final state due to the limited
signal to noise ratio — the emitted pulse energy is on the
order of only 100 fJ. On the other hand, in agreement with
Fig. 2, even a small difference in amplitude is associated
with a large interpulse interval difference in the nonequidis-
tant pulsing regime. Overall, the experimental observations
show excellent agreement with the dynamics predicted by the
bifurcation analysis of the model. They demonstrate multista-
bility between the experimental regimes with two and three
nonequidistant pulses. Moreover, the quasiperodic regime cor-
responding to unlocked dynamics on an invariant torus are not
observed, in good agreement with the theoretical predictions
of very large locking regions in the parameter space (see
Fig. 3).

V. DISCUSSION AND CONCLUSION

We demonstrated that an optical excitable system with
delayed feedback can sustain stable pulsing patterns with
different numbers of nonequidistant pulses in the feedback
loop. These arise from stable solutions with n equidistant
pulses via torus bifurcations and associated 1:7n resonances,
which manifest themselves as a swift breaking of the timing-
symmetry due to the strong amplitude-timing coupling of the
excitable system. We find stable nonequidistant pulsing in
large resonance tongues in the parameter space, bounded by
saddle-node bifurcations of periodic solutions. As the delay is
increased, there is a high and increasing degree of multista-
bility between both symmetric and symmetry-broken pulsing
patterns in the feedback loop. Which long-term behavior is
observed depends on the initial condition. We demonstrated
that nonequidistant pulsing can be observed reliably in an
experiment with an excitable micropillar laser.

Our results are reminiscent of the pulsing dynamics of
models in neuroscience that describe delay-coupled neurons
either by a single limit cycle oscillator with delayed self-
coupling [37,38] or by two limit cycle oscillators coupled
through a time dependent synaptic response [39,40]. In our
case, however, oscillations do not pre-exist and originate from
the delayed feedback itself and their period is intimately
linked to the delay time. This further illustrates that our re-
sults are expected to be generic and to extend beyond optics.
Moreover, a mathematical connection between temporal dis-
sipative solitons in spatially extended systems and pulsing
regimes in delay systems has been recently suggested [30].
This raises open questions regarding possible connections be-
tween nonequidistant pulsing regimes and soliton molecules,
which are bound states of pulses [41,42].

Beyond their fundamental interest for the nonlinear dy-
namics of delay systems, our results may contribute to the
realization of nonconventional pulsing and reconfigurable
optical sources [43], and to optical computing schemes
[44-47] that rely on the large phase space available in delay
systems [48].
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