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We report experimental and theoretical results on the
pulse train dynamics in an excitable semiconductor mi-
crocavity laser with integrated saturable absorber and
delayed optical feedback. We show how short opti-
cal control pulses can trigger, erase or retime regener-
ative pulse trains in the external cavity. Both repulsive
and attractive interactions between pulses are observed,
and are explained in terms of the internal dynamics of
the carriers. A bifurcation analysis of a model consist-
ing of a system of nonlinear delay differential equa-
tions shows that arbitrary sequences of coexisting pulse
trains are very long transients towards weakly stable
periodic solutions with equidistant pulses in the exter-
nal cavity. © 2018 Optical Society of America
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1. INTRODUCTION

Controllable sources of short optical pulse trains are at the heart
of many recent developments in physics, with potential appli-
cations to optical telecommunications and signal processing.
Trains of short pulses can arise from cw, coherently-driven op-
tical fibre cavities [1] or nonlinear microcavities [2, 3], forming
dissipative temporal solitons. In the laser regime, mode-locked
dissipative solitons have been observed in fibre laser cavities [4]
and in a face-to-face VCSEL configuration [5]. Pulse trains can
also be produced by using the regenerative self-pulsing config-
uration of an excitable laser with time-delayed feedback. This
configuration was implemented in a coherently driven VCSEL
[6], an opto-electronic system [7] and a micropillar laser with
integrated saturable absorber [8, 9]. Excitability [10, 11] is asso-
ciated with an all-or-none response to external perturbations,
depending on whether or not the amplitude of the perturbation
exceeds the excitability threshold. In the excitable regime, a
laser with saturable absorber (LSA) subject to a perturbation
either emits an excitable response in the form of a short, high-

amplitude pulse, or relaxes back to its off-state [11]. In the pres-
ence of an optical feedback loop with delay τ, the reinjection of
an initial excitable pulse can trigger another excitable response.
As the process repeats, this results in a train of pulses with a
repetition rate close to the feedback delay [9]. This picture is
however oversimplified, and a theoretical analysis predicts more
complicated dynamics, including the coexistence of several self-
pulsing modes with the stable off-state [12, 13]. In particular,
bistability between a pulsing periodic solution and the off-state
is a condition for the on and off switchability of the regenerative
pulse trains [9]. The pulsing dynamics is also driven by the non-
linear latency between the reinjection and the regeneration of a
pulse [14–16], which is strongly related to the net gain dynamics
of the laser active medium accounting for the saturable gain
and saturable loss. Despite similar features of the pulsing dy-
namics, it is worth noting that the physics involved here differs
considerably from the one of temporal dissipative solitons in e.g.
mode-locked lasers [5]: the micropillar LSA with delayed feed-
back is intrinsically a single mode system and does not involve
the locking dynamics of several external cavity modes.

In this Letter, we present experimental results on the optical
control and interaction of pulse trains in an excitable micropillar
laser with integrated saturable absorber and delayed optical
feedback. We show that the Yamada model with incoherent
delayed optical feedback describes the pulsing dynamics in very
good agreement with the experiment [9, 11], and allows us to
explain the pulse-to-pulse interactions by the carrier dynamics
of the laser. We reconcile the bifurcation analysis of the model
with the numerical and experimental observations showing that
non-regularly timed pulse trains are in fact very long transients,
which evolve to solutions with equidistant pulses in the external
cavity as a consequence of the carrier dynamics. In constrast to
temporal dissipative solitons in other systems [17, 18], we show
that pulse trains can also show attractive interactions. Finally,
we show that reliable all-optical pulse train control is possible
experimentally with short optical control pulses.

2. EXPERIMENTAL SETUP AND MODEL

The experimental setup is similar to the one described in [9],
but with improved feedback strength thanks to a considerable
reduction of feedback losses. A micropillar laser with integrated
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saturable absorber [19, 20] emitting around 980nm is optically
pumped at 800nm. The laser emission is fed back after a delay τ
through a mirror located several tens of centimeters away. Part
of the emitted beam is selected by a beamsplitter and analyzed
by a camera and a fast avalanche photodetector (> 5GHz band-
witdh). The solitary micropillar laser is excitable for a large
range of pump powers below threshold [11]. The 80ps optical
perturbations triggering an excitable response are produced by
a mode-locked Ti:Sa laser emitting at ∼800nm.

This system is modelled by the Yamada rate equations with
incoherent delayed optical feedback [12, 21]:

Ġ = γG(A − G − GI),

Q̇ = γQ(B − Q − aQI),

İ = (G − Q − 1)I + κ I(t − τ),

(1)

for the dimensionless gain G, absorption Q and intensity I. Here,
A is the pump parameter, B is the non-saturable absorption, a is
the saturation parameter and γG and γQ are the carrier recom-
bination rates in the gain and absorption media, respectively.
The delayed term in the intensity equation describes incoherent
feedback with delay τ and strength κ. The parameter values
used in simulation are, unless otherwise stated, A = 2.4, B = 2.2,
γG = 0.01, γQ = 0.02, a = 5, κ = 0.05 and τ = 1100. These are
chosen both to match the known physical parameters and the
experimental observations. The results presented here are ro-
bust in the presence of reasonable amounts of both spontaneous
emission and pump noise. Hence, we do not include noise terms
in (1) and concentrate on the deterministic dynamics.

3. WRITING AND COEXISTENCE OF PULSE TRAINS

Fig. 1 shows a direct comparison between observed and simu-
lated pulse trains. The temporal traces are folded at the delay
time τ and stacked vertically in a pseudo-space representation
[22]. In panel (a1), a single external perturbation leads, as ex-
pected, to a pulse train whose repetition rate is slightly larger
than the delay time τ, due to the nonlinear latency time of the
excitable response [14, 15]. Pulse trains can be sustained for
very long time, depending on the feedback strength and on the
amount of noise in the system [9]. For very low feedback losses,
the observed pulse train duration is limited by the acquisition
memory of the oscilloscope.

In panel (b1), two successive perturbations are sent with
a time difference of 12.5ns. This leads to the coexistence of
two pulse trains in the cavity, separated by a time interval of
approximately 0.4 × τ which seems to remain constant on the
timescale of 250 round trips. This suggests that this pulse train
does not correspond to a harmonic regime. Three coexisting
pulse trains can also be observed, as in Fig. 1(c1). As shown in
Fig. 1(a2)–(c2), these experimental results can be matched almost
perfectly by the Yamada model (1).

For the same parameters, Fig. 2 represents the phase portrait
of system (1) in the (G, I)-plane, calculated with the continua-
tion toolbox DDE Biftool [23, 24]. It shows the coexistence of
seven stable solutions: a non-lasing equilibrium and six periodic
pulsing solutions. These coexist with several unstable periodic
solutions and equilibria, which are not represented here. The
stable pulsing solutions have periods T close to submultiples
of τ, and hence correspond to different numbers of equidistant
pulses in the external cavity [13]. Apart from the one for which
T is close to τ, they all are only weakly stable: the modulus of
their leading Floquet multiplier, shown in Fig. 2 (b), is very close

to one. Importantly, there exists no stable periodic solutions
with non-equidistant pulses in the external cavity, despite the
fact that such solutions are observed over long periods of time
in experiments and simulations.
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Fig. 1. Pseudo-space representation of experimental (left) and
simulated (right) pulse trains following one (a), two (b) and
three (c) perturbations. In the experiment, the feedback delay
time is 4.77ns.

4. LONG-TERM BEHAVIOUR

This raises the question of the long-term behaviour of pulse
trains with non-equidistant pulses (Fig. 1(b)–(c)). Fig. 3(a–c)
represents the relative timing of two coexisting pulses of (1)
over several hundreds of round trips, showing that the two
pulses become equidistant in the long term. In fact, regimes
with non equidistant pulses are very long transients toward one
of the (weakly) attracting periodic solutions of Fig. 2(a). The
bifurcation analysis of equations (1) shows that the amplitudes
of the periodic solutions with largest periods are very close to
each other (see the two largest orbits in Fig. 2) [13]: as such, no
significant difference is observed in the amplitudes when one or
several pulses exist in the external cavity.

The slow convergence towards the stable periodic solution
is explained entirely by the dynamics of the net gain G̃ =
G − Q − 1. In the solitary laser, each excitable pulse is followed
by an absolute and a relative refractory periods, during which
no other pulse can be triggered, or the conditions to trigger
another pulse are more stringent, respectively [8]. These time
windows are related to the recovery time of the carriers in the
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Fig. 2. (a): Phase portrait of (1) in the (G, I)-plane, showing
one stable equilibrium (dot) and six stable periodic solutions
(curves). (b) Modulus of the leading Floquet multiplier of each
periodic solution, with respect to its period.
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Fig. 3. Simulation of two coexisting pulse trains. (a–b) Pseudo-
space representation just after the perturbations and in the
long term. (c) Evolution of the elapsed time between succes-
sive pulses; the shaded areas are the segments represented in
(a) and (b). Temporal evolution in the shaded area of panel (a)
of: (d) gain G and (e) net gain G̃.

gain and absorber sections of the microlaser, described by γG
and γQ. In Fig. 3(d–e), the absorption recovers faster than the
gain (γQ > γG): after a pulse, the low net gain G̃ increases back
to its saturated value as the gain G recovers. The second pertur-
bation is introduced in the relative refractory period of the first
pulse, where the absorber recovered entirely, and the gain has
recovered sufficiently for the second pulse to be sustained. How-
ever, it did not recover entirely, so that the net gain experienced
by the second pulse train is slightly smaller than for the first
pulse train. Because the net gain determines the latency of the
excitable response to a perturbation [15], this results in a slightly
larger response time, and hence repetition period, for the second
pulse train compared to the first pulse train. Round trip after
round trip, the second pulse is reinjected further away from the
first one, until both pulse trains experience an identical net gain,
and their repetition periods become equal. This convergence to
the solution with equidistant pulses gives the impression of a
repulsion between pulses.

Because the system converges in the long term to a stable
periodic orbit of the phase portrait, the maximum number of
pulses that can be sustained simultaneously is related to the
number of stable periodic solutions. In Fig. 2, the periodic orbit
with the smallest period corresponds to the coexistence of six
pulses in the external cavity. In Fig. 4(a), six pulse trains are
triggered and indeed sustained in simulation, and they become
equidistant after several round trips. Three different scenarios
can result from a seventh perturbation, depending on its timing.
When sent in the absolute refractory period of an existing pulse,
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Fig. 4. (a) Simulated pulse trains following six perturbations,
and effect of a seventh perturbation for two different timing (A
and B). (b) Experimental retiming of a pulse train.

the low gain prevents a pulse from being triggered. If sent just
before an existing pulse (case A), a new pulse is triggered but
the absolute refractory period of the newly created pulse pre-
vents the next pre-existing pulse to be regenerated. This results
in the retiming of the pulse train while keeping the number of
coexisting pulses unchanged; see also the experimental plot in
Fig. 4(b). When the seventh perturbation is sent in the relative
refractory period of a pre-existing pulse (case B), the gain G
did not recover entirely, and the newly created pulse thus has a
small amplitude, which prevents its regeneration after a delay
τ. Moreover, the absolute refractory period of this single pulse
results in a switch off by preventing the regeneration of the next
pulse. The final state has only five coexisting pulses, which then
converge towards an equidistant configuration. Overall, there is
no suitable perturbation timing to trigger a sustained seventh
pulse. From a mathematical point of view, these different scenar-
ios are related to the basins of attraction of the different stable
periodic solutions. The ability of a perturbation to bring the sys-
tem outside of the basin of a periodic orbit obviously depends
on both amplitude and timing along the orbit. A detailed study
of these basins is beyond the scope of this Letter, and will be
discussed elsewhere.

5. PULSE TRAINS INTERACTION

We showed the existence of a weak "repulsion" of a second
pulse in Fig. 3. More surprisingly, "attractive" interaction is
also observed, as shown in Fig. 5(a)–(b) for experimental and
simulated data. The explanation of this phenomenon is more
subtle and now requires consideration of the dynamics of both
the net gain G̃ and the gain G. Here, γG must be larger than
γQ, so that the net gain G̃ decreases in between two pulses, as
shown in Fig. 5(c). The second perturbation is introduced in the
relative refractory period of the first pulse, where it benefits from
a higher net gain than the first pulse train. The response time
of the laser is thus shorter, which results in a slightly smaller
repetition rate for the second pulse train compared to the first
one. Round trip after round trip, the second pulse is reinjected
closer and closer to the first pulse and benefits from a higher
and higher net gain, which shortens further the repetition rate
and explains the impression of an attraction between the pulses.
Eventually, the second pulse is reinjected when insufficient gain
G is available, which prevents its regeneration and stops the
second pulse train.

The pseudo-space representation in Fig. 3–5 may suggest that
the pulses interact in the external cavity. However, we stress
that the only mechanism for interaction is through the gain and
absorption in the microlaser itself. Although the systems are
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fundamentally different, a similar mechanism was suggested in
[25] for a model for mode-locked lasers, that explains the stability
properties of mode-locked solutions with one and several pulses
in the laser cavity. However, to our best knowledge, attractive
interaction has never been observed.
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Fig. 5. (a) and (b) Attractive interaction between two experi-
mental and simulated pulse trains. (c) and (d) Temporal evolu-
tion of G and G̃ in the shaded area of panel (b). In simulation,
the parameters are A = 2, B = 2, γG = 0.02, γQ = 0.01, a = 10,
κ = 0.1 and τ = 1000.

6. OPTICAL CONTROL OF PULSE TRAIN DURATION

Based on these mechanisms, we show that a short optical ex-
ternal perturbation can reliably switch on and off a pulse train.
This is much faster than existing techniques; in particular, it does
not involve a modulation of the pumping current or a precise
control of the phase of the holding beam [17, 18]. Fig. 6(a) shows
two successive perturbations, and the resulting experimental
temporal trace is Fig. 6(b). The pulse train is reliably switched
off by the second perturbation, which has been checked for one
thousand experimental realisations. There is a definite window
in the amplitude and timing of the second perturbation to switch
off the pulse train. In particular, the two perturbations are sent
12.5 ns apart for technical reasons, but the feedback delay (4.2ns)
is chosen such that the second perturbation arrives just before
the regeneration of the fourth pulse. This phenomenon can be
reproduced in the model, which requires a careful choice of pa-
rameter values, so that a second perturbation brings the system
into the basin of attraction of the off-state.

0 time (ns) 50
0

0.06

P

0

0.04

I

0 time (ns) 50

(a) (b)

Fig. 6. (a) External perturbations and (b) response of the exper-
imental device.

7. CONCLUSION

We have shown that an excitable micropillar laser with delayed
optical feedback can sustain several pulse trains in the exter-
nal cavity, which can be reliably and independently controlled

all-optically by short pulses. By using a suitable mathematical
model, we show that all pulsing dynamics are long transients to-
wards a periodic solution with equidistant pulses in the external
cavity. The impression of attractive and repulsive pulse interac-
tions is explained entirely by latencies generated by the gain and
net gain dynamics in the microlaser itself. As such, this inter-
action mechanism does not involve the notion of force. Rather,
the only ingredients needed are excitability and self-feedback.
These are encountered in many systems, including neurons and
cardiac cells [10]. As such, our results might be applicable to
systems beyond the particular device considered here.
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