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ABSTRACT

Excitability, encountered in numerous fields from biology to neurosciences and optics, is a general phenomenon characterized by an
all-or-none response of a system to an external perturbation of a given strength. When subject to delayed feedback, excitable systems can
sustain multistable pulsing regimes, which are either regular or irregular time sequences of pulses reappearing every delay time. Here, we
investigate an excitable microlaser subject to delayed optical feedback and study the emergence of complex pulsing dynamics, including
periodic, quasiperiodic, and irregular pulsing regimes. This work is motivated by experimental observations showing these different types of
pulsing dynamics. A suitable mathematical model, written as a system of delay differential equations, is investigated through an in-depth bifur-
cation analysis. We demonstrate that resonance tongues play a key role in the emergence of complex dynamics, including non-equidistant
periodic pulsing solutions and chaotic pulsing. The structure of resonance tongues is shown to depend very sensitively on the pump parame-
ter. Successive saddle transitions of bounding saddle-node bifurcations constitute a merging process that results in unexpectedly large regions
of locked dynamics, which subsequently disconnect from the relevant torus bifurcation curve; the existence of such unconnected regions of
periodic pulsing is in excellent agreement with experimental observations. As we show, the transition to unconnected resonance regions is
due to a general mechanism: the interaction of resonance tongues locally at an extremum of the rotation number on a torus bifurcation curve.
We present and illustrate the two generic cases of disconnecting and disappearing resonance tongues. Moreover, we show how a pair of a
maximum and a minimum of the rotation number appears naturally when two curves of torus bifurcation undergo a saddle transition (where
they connect differently).

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0124693

An excitable system (e.g., a spiking neuron or a semiconduc-
tor laser) subject to delayed feedback can either remain in its
rest state or, when perturbed with an external signal of suffi-
ciently large strength, regenerate periodically its own excitable
response when its response is reinjected after the delay time
τ . This very general mechanism for self-pulsations has been

demonstrated in different optical systems, including a vertical
cavity surface-emitting laser with optoelectronic feedback, a sys-
tem of coupled semiconductor lasers, and a microlaser with opti-
cal feedback, as well as in an actual biological cell. Here, motivated
by recent experiments, the dynamics of an excitable micropillar
laser with delayed optical feedback is investigated with a suitable
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mathematical model. We use a numerical continuation software
package for delay systems to perform an in-depth bifurcation
analysis in the plane of the feedback delay τ and feedback strength
κ and for different fixed values of the pump parameter (energy
input to the laser). This highlights the important role played by
resonance tongues in the emergence of complex, experimentally-
observed dynamics and regimes of periodic and chaotic puls-
ing. In particular, we show that periodic non-equidistant puls-
ing corresponds to locked periodic solutions on stable invari-
ant tori. The corresponding locking regions (or tongues) in the
(τ , κ)-plane are found to become surprisingly large for certain
values of the pump parameter—and the associated transitions
occur over a small range of the pump parameter A of the micro-
laser. As an important aspect of this transition, we identify the
generic phenomenon of disconnecting and disappearing reso-
nance tongues. This happens naturally near a minimum (or a
maximum) of the rotation number of the associated torus bifur-
cation curve when a third parameter is changed.

I. INTRODUCTION

Excitability refers to the spiked or pulsed response of a system
at rest to an external perturbation when the perturbation ampli-
tude exceeds the so-called excitable threshold, while no response
occurs for smaller perturbations.1 This general phenomenon has
been described in a variety of scientific fields from biology2 to
neurosciences3 and optics4 and typically results from the interplay
between different internal timescales in the system. After a (short)
excitable pulse has been triggered, the system enters a refractory
period, during which it is either impossible or much more diffi-
cult to trigger another excitable response;5 note that the refractory
period is significantly larger than the duration of the pulse itself. In
the presence of delayed feedback, an excitable system can regener-
ate its own output: after a first pulse has been excited by an external
perturbation, the output is reinjected after the feedback delay time
τ , which triggers the next pulse. As the process repeats, this results
in a periodic pulsing regime whose period is directly related and
close to the delay τ . This general mechanism for self-pulsations has
been demonstrated in a variety of optical systems,6–8 as well as in an
excitable biological cell.2

From a more general point of view, the introduction of a delay
to an excitable system can induce a wealth of complex dynam-
ics beyond regular self-pulsing.9–11 This includes a high degree of
multistability12 and an enhanced dynamical complexity, such as, for
example, quasiperiodic13 and chaotic regimes. In particular, recent
experimental and numerical investigations have demonstrated that
an excitable microlaser with delayed feedback can sustain multi-
stable periodic pulsing regimes.14,15 Depending on the ratio between
the dominant internal timescale of the excitable microlaser and the
delay time of the feedback loop or external cavity, these include
pulsing patterns with equidistant pulses of equal amplitude or with
non-equidistant pulses of different amplitudes.16 The emergence of
equidistant pulsing patterns is well understood.12,15,17 The emergence
of non-equidistant pulsing regimes, on the other hand, has been sug-
gested to originate in resonance phenomena associated with locked

periodic orbits on stable tori16—yet this is still to be investigated,
which motivated the work presented here.

We adopt a dynamical systems point of view to investigate
experimentally and numerically the emergence of multi-frequency
dynamics in an optical realization of an excitable system with
delayed feedback. We consider an excitable microlaser subject to
delayed optical feedback,5,18 whose study is motivated by potential
applications to neuromorphic photonic computing.19,20 Its feedback-
induced dynamics is investigated both experimentally and with a
suitable mathematical model—the Yamada equations with delayed
feedback,17,21 which take the form of three coupled delay differential
equations (DDEs) with two slow and one fast variables. Com-
pared to ordinary differential equations, solving DDEs requires spe-
cific numerical methods due to their infinite-dimensional nature.22

We use the Matlab-based numerical continuation software DDE-
Biftool23–25 to perform an in-depth bifurcation analysis in three
parameters of practical importance: the feedback delay τ , the feed-
back strength κ , and the pump parameter A. The results pre-
sented here unveil how very large, experimentally accessible locking
regions emerge in the parameter space, leading to an increased and
observable degree of multistability. We show that this phenomenon
involves several transitions in the (τ , κ)-plane that change the struc-
ture of regions of locked dynamics. These occur in such a very small
A-interval that the associated switch in observed pulsing may seem
instantaneous from an experimental perspective. From the mathe-
matical point of view, on the other hand, we are able to distinguish
and identify these transitions. In particular, we find two generic
cases of resonance tongues interacting locally at an extremum of the
rotation number on a torus bifurcation curve. These lead to the dis-
connection and disappearance of resonance tongues in a parameter
plane, respectively, as a third parameter is changed. As we also show,
extrema of the rotation number emerge naturally, including in the
Yamada model with delayed feedback, when two torus bifurcation
curves reconnect differently at a saddle transition.

The article is organized as follows. The experimental device
is described in Sec. I A, and experimental observations are pre-
sented and discussed. Background on the mathematical model is
provided in Sec. I B. In Sec. II, multi-frequency dynamics, including
non-equidistant periodic pulsing regimes, quasiperiodic regimes,
and chaos are investigated through time-domain simulations of the
model. In Sec. III, a bifurcation analysis demonstrates that resonance
tongues in the (τ , κ)-plane play a key role in the emergence of the
observed multi-frequency dynamics. The sensitivity of the structure
of resonance tongues to the experimentally relevant pump param-
eter A is investigated in detail in Sec. III B, and the phenomenon
of disconnecting and disappearing resonance tongues is the focus of
Sec. III C. We draw some conclusions in Sec. IV.

A. Experimental device and observed pulsing regimes

In our optical realization, we use a semiconductor micropil-
lar laser with integrated saturable absorber, consisting of a 5 µm
diameter pillar laser with an original design.5,18,26 In particular, its
microcavity includes both a gain and a saturable absorber section.
This microlaser emits light perpendicularly to its surface at the cav-
ity resonance wavelength of 980 nm and is optically pumped at
around 800 nm. In the absence of feedback and when the pump
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is increased from zero, the solitary microlaser displays sequentially
different dynamical regimes: a non lasing regime with zero inten-
sity, an excitable regime, where the laser is off but can emit a
single pulse of light when perturbed with sufficient amplitude, and a
self-pulsing (Q-switched) regime, which is typically subject to a con-
siderable timing-jitter.5,27,28 Here, the pump intensity is set just below
the self-pulsing threshold such that, in the absence of feedback,
the microlaser is in the excitable regime.5,29,30 Short optical pulse
perturbations (of 80 ps duration) can be sent by an external Ti:Sa
mode-locked laser to trigger excitable responses that consist of opti-
cal pulses of approximately 200 ps duration. To realize an external
cavity that introduces a delayed feedback, a part of the output signal
of the microlaser is transmitted through a beam splitter (R/T=70/30)
and reflected back by a distant mirror after passing through a lens of
5 cm focal length lens. The resulting optical feedback delay time τ

can be set between ∼5 and 10 ns. The light reflected by the beam
splitter is analyzed using an avalanche photodiode, amplified with
a high bandwidth RF-amplifier, and recorded with an oscilloscope.
The microlaser is temperature controlled close to room temperature,
thanks to a Peltier cooler.

In the presence of feedback, it has been shown that a
first excitable pulse can regenerate itself when reinjected in the
micropillar after the delay τ , provided that the feedback strength
is sufficiently large.15 This results in a periodic pulsing regime
with a fundamental repetition frequency close to τ−1; this regime
can coexist with harmonic pulsing solutions with several regu-
larly timed pulses in the feedback cavity. It has been shown that
individual pulse trains can be added or erased by single external
optical perturbations.14,15 Under certain experimental conditions,
non-regular pulse trains can also be emitted following a seemingly
pulse-timing symmetry-breaking phenomenon.16

Figure 1 illustrates the diversity of pulsing dynamics observed
experimentally. The left column represents time series of the mea-
sured intensity I and the right column shows their pseudo-space
representation:31 temporal traces are folded at (approximately) mul-
tiples of the delay time τ and stacked vertically. In this represen-
tation, the x-axis represents the delay line (realized by the external
feedback cavity) and the y-axis the recorded number of round trips
in the external feedback cavity. Figure 1(a) shows a periodic regime
with two equidistant pulses per feedback round trip, triggered by
an appropriate sequence of two successive external perturbations.15

The amplitude of the pulses is quite irregular, while the interpulse
timing repeats consistently round trip after round trip. Such laser
intensity fluctuations can be attributed to pump noise and also to
detection noise since the microlaser has a very low output power.8 In
Fig. 1(b), the system is in the symmetry-broken regime:16 it sustains
two pulses per round trip with unequal but well-defined inter-
pulse timings. In the pseudo-space representation, it appears as two
non-equidistant pulses in the external feedback cavity. Figure 1(c)
illustrates a regime reminiscent of quasiperiodic dynamics. In par-
ticular, it displays a strong modulation of the pulse amplitude. Note
that the pulse timing is also affected, as the pseudo-space represen-
tation shows: the group of pulses shows a negative shift (toward the
left) when the pulse amplitude increases. This is explained by the
strong amplitude-timing coupling in excitable systems: the response
time to an external perturbation gets shorter when the perturba-
tion amplitude is increased.14 Importantly, all the regimes shown in

FIG. 1. Experimental intensity time series (left, a1–d1) and their pseudo-
space representation (right, a2–d2) for: (a) equally spaced two pulses per feed-
back round trip (τ = 5.47 ns), (b) symmetry-broken two pulses per round trip
(τ = 8.22 ns), (c) modulated quasiperiodic regime (τ = 4.78 ns). (a)–(c) are
observed below the laser threshold, in the regenerative pulsing regime. (d)
complex dynamics above the lasing threshold (τ = 4.77 ns).

panels (a)–(c) are multistable and coexist with the off-state (non-
lasing equilibrium) of the laser. Finally, Fig. 1(d) illustrates a com-
plex pulsing regime reminiscent of chaotic dynamics. It is recorded
for a value of the pump parameter slightly above the first lasing
threshold at which the off-state of the laser loses stability. As such,
this regime is not triggered by external pulse perturbations, but
rather by noise. The pseudo-space representation clearly shows mul-
tiple competing pulses in the feedback cavity. This complex regime
cannot be observed for a long period of time because the microlaser
heats up, which results in it switching off.
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Overall, Fig. 1 clearly illustrates the existence of different peri-
odic, quasiperiodic, and more complex regimes of the excitable
micropillar laser with delayed optical feedback. It should be noted
that the different regimes in Fig. 1 are observed for different exper-
imental parameters, in particular, for different values of feedback
delay and pump intensity, which are easily tuned and are the main
control parameters. Overall, the other parameters, which include
the feedback strength and the internal parameters of the micro-
lasers, can be considered fixed. In practice, however, the internal
parameters and the feedback strength may differ slightly depend-
ing on the different microlasers considered on the sample due to
small fabrication non-uniformities and different optical alignments,
respectively.

B. Background on the Yamada rate equations with

delay

The dynamics of the experimental system under consideration
is investigated by using a straightforward extension of the origi-
nal Yamada rate equation model,21 a well-known system of three
ordinary differential equations (ODEs) for single-mode, Q-switched
lasers. It has been studied extensively, in particular, through a com-
plete numerical bifurcation analysis, which highlighted all its possi-
ble dynamics.28,32 This showed that this model exhibits an excitable
regime for a large range of parameters, below the lasing threshold
at which the non-lasing (i.e., zero-intensity) equilibrium becomes
unstable. We consider here the Yamada model with an additional
delayed optical feedback term.17 This model has three equilibrium
solutions. This includes a zero intensity equilibrium, which cor-
responds to the non-lasing regime. It exists for all values of the
parameters, including when the feedback strength is zero, which
corresponds to the case of the solitary laser. A pair of additional
equilibria emerge in a saddle-node bifurcation at a value of the feed-
back strength, which depends on the physical parameters of the
solitary laser.17 These two equilibria have a non-zero intensity; they
correspond to continuous-wave operation of the laser. An extended
bifurcation analysis has also shown that, as expected for a delay
system,12 an infinite number of (pulsing) periodic solutions emerge
as the delay time τ is increased.10,17 Their periods correspond to
submultiples of the delay time τ , meaning that the successive peri-
odic solutions that emerge as τ increases correspond to regimes
with an increasing integer number of equidistant pulses in the span
of one delay time. Overall, the Yamada model with feedback has
been shown to describe accurately a range of dynamics observed
experimentally in the micropillar laser with an integrated saturable
absorber and delayed optical feedback considered in this article.8,14–16

This includes a variety of stable pulsing periodic regimes with dif-
ferent numbers of equidistant and non-equidistant pulses in the
feedback cavity. The model is written as a system of three coupled
DDEs for the dimensionless gain G, absorption Q, and intensity I,

Ġ = γG(A − G − GI),

Q̇ =
γG

σ
(B − Q − aσQI),

İ = (G − Q − 1)I + κI(t − τ).

(1)

Here, A is the pump parameter, B describes the linear absorption,
a is the saturation parameter, γG is the recombination rate of carri-
ers in the gain section, and σ is the ratio between the recombination
rate of carriers in the gain and absorber sections; furthermore, time
is rescaled in (1) to the photon lifetime in the cavity (which is on
the order of 1–2 ps). Importantly, γG is usually small in semicon-
ductor lasers and σ is between 0.5 and 2 for the microlaser we
consider. As such, system (1) is a slow-fast dynamical system with
two slow variables G and Q, and one fast variable I. In the intensity
equation, the delayed term describes the incoherent delayed optical
feedback with feedback strength κ and delay time τ . The influence
of the feedback parameters κ and τ has been investigated through
an extensive bifurcation analysis.10,17 This highlighted, in particular,
an important and increasing level of multistability as the delay τ is
increased, with a large number of coexisting stable periodic puls-
ing solutions. The parameters describing material properties of the
laser are fixed here throughout to B = 2, γG = 0.01, a = 5.5, and
σ = 1.8; these values are chosen to match the parameters consid-
ered in previous work,16 as well as experimental observations. The
pump parameter A, the feedback strength κ , and the feedback delay
τ , on the other hand, can be changed during the experiment and are
bifurcation parameters. Importantly, for all the parameters combi-
nations considered in this article, the solitary laser for κ = 0 (i.e.,
the model without the feedback term) is in the excitable regime: the
non-lasing equilibrium, corresponding to the laser off-state, is stable
but the system can release a single intensity pulse when subject to an
external perturbation with sufficiently large amplitude.28

II. MULTI-FREQUENCY DYNAMICS IN TIME-DOMAIN

SIMULATIONS

The experimentally observed regimes in Fig. 1 can be identified
in time-domain simulations of the Yamada model with feedback (1).

Figures 2 and 3 illustrate such simulations with time series of
the intensity I. In Fig. 2, the parameters A, τ , and κ are chosen
to show two types of two-pulse regimes. In Fig. 3, pump parame-
ter and feedback delay are fixed to the values A = 2.7 and τ = 335
considered in Fig. 2(a), respectively, and three values of the feed-
back strength κ = 0.0158, κ = 0.0252, and κ = 0.1 are considered
to show how non-periodic solutions develop. We checked that, for
the considered values of A, the solitary laser (for κ = 0) is indeed
in the excitable regime. Moreover, in the presence of feedback, the
non-lasing (i.e., zero-intensity) equilibrium solution of (1) is still sta-
ble for all the values of κ and τ considered in Figs. 2 and 3: hence, the
intensity I remains zero in the absence of external perturbations. In
the simulations, an initial external perturbation is accounted for by
setting initial conditions (given for a DDE by a history segment over
[−τ , 0]) with suitable non-zero intensity. In Fig. 2, the non-lasing
equilibrium is considered history, and an intensity perturbation is
introduced at t = 0. In Fig. 3, on the other hand, these are set to the
(unstable) equilibrium solution of (1) with a non-zero intensity I,
which corresponds to the continuous-wave regime of the laser.10

The time series are shown after a few dozens or hundreds of
round trips to ensure that any transient dynamics has died down.
The displayed dynamical regimes thus correspond to stable puls-
ing regimes of (1). Figures 2(a2) and (b2) and 3(a2)–(c2) show the
corresponding pseudo-space representation of these time series,31 as
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FIG. 2. Time-domain simulations of (1) showing intensity time series (left, a1
and b1) and their pseudo-space representation (right, a2 and b2). The inset in
panels (a1) and (b1) shows an enlargement of the intensity times series over
five round trips in the external feedback cavity. The parameters are (A, τ , κ)

= (2.7, 335, 0.12) in (a) and (A, τ , κ) = (2, 600, 0.525) in (b).

explained above. These simulation results illustrate the diversity of
stable pulsing regimes observed in the model.

Figure 2(a) shows a periodic pulsing regime with two equidis-
tant pulses in the external feedback cavity, that is, over the span
of one delay time τ that constitutes the feedback loop. This shows
excellent agreement with the experimental results in Fig. 1(a). Note
that the amplitude also repeats exactly here because (1) does not
feature (pump or other) noise. The positive slope of the intensity
pulse trains in the pseudo-space representation in panel (a2) shows
that the period of pulsing is slightly larger than τ/2, which is due to
the latency time of the system to the re-injected perturbation.10,12,17

This latency time depends on the feedback strength κ in a sensi-
tive way.14,29 Figure 2(b) presents a periodic pulsing regime with two
non-equidistant pulses per feedback round trip, which shows very
good agreement with the experimental results in Fig. 1(b). As dis-
cussed in recent work,16 these non equidistant pulsing regimes are
observed over large ranges of the feedback parameters.

Together with Fig. 2(a), Fig. 3 illustrates the diversity of sta-
ble pulsing regimes over a small range of the feedback strength κ ,
all other parameters being fixed. Figures 3(a) and 3(b) for increas-
ing values of κ show examples of dynamics on a torus, which
may be quasiperiodic or locked to an attracting periodic orbit.
Locked periodic solutions are found inside resonance regions or
resonance tongues, which are regions of a parameter plane that are
bounded by curves of saddle-node bifurcations of periodic orbits.
Resonance tongues emerge from resonance points, which are points
along a torus (or Neimark–Sacker) bifurcation curve where the rota-
tion number is rational.33,34 Quasiperiodic solutions, on the other
hand, are found in the parameter plane along curves “in between”
infinitely many and generally very narrow resonance tongues.

Figure 3(a) for κ = 0.0158 is past a torus bifurcation and
shows a quasiperiodic regime (or a periodic regime with a very

FIG. 3. Time-domain simulations of (1) for A = 2.7 and τ = 335, showing inten-
sity time series (left, a1–c1) and their pseudo-space representation (right, a2–c2);
κ = 0.0158 in (a), κ = 0.0252 in (b), and κ = 0.1 in (c). The inset in panels
(a1)–(c1) shows an enlargement of the intensity time series over five [(a1) and
(b1)] and two (c1) round trips in the external feedback cavity.

large period); in particular, the time series does now not repeat
exactly but displays roughly five pulses in the feedback loop, with
a deeply modulated pulse amplitude. The pseudo-space representa-
tion in panel (a2) highlights the strong amplitude-time coupling of
the pulses.14 Figure 3(b) for κ = 0.0252 shows a locked periodic orbit
on a torus. Note that, in contrast to the periodic solutions emerging
from Hopf bifurcations,10 the period of this periodic regime is not
directly related to an integer submultiple of the feedback delay time
τ . Rather, a single period of the periodic solution displays several
intensity pulses with different amplitudes, which is characteristic of
a locked periodic orbit on a stable invariant torus. The fact that a
stable quasiperiodic regime is observed in panels (a) for a nearby
yet smaller value of κ supports the interpretation that panels (b)
indeed show a locked periodic solution on a stable torus. A num-
ber of other quasiperiodic regimes with different number of pulses
in the feedback cavity, also displaying a deep modulation of the
pulse amplitude, can be observed in (1) when varying the param-
eters. This includes a quasiperiodic regime with a single pulse per
feedback round trip, similar to the one observed experimentally35

(see Fig. 1). These quasiperiodic regimes typically emerge from torus
bifurcations of pulsing periodic regimes displaying a fixed number
of equidistant pulses per delay interval.10,16 Finally, Fig. 3(c) for the
yet larger value of κ = 0.1 shows an example of a chaotic regime.
Here no clear structure is observed in neither the repetition rate
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nor the pulse amplitudes, which is visually clear especially in panel
(c2); see also panel (c1) and the enlargement of the intensity time
series over two round trips in the inset; note, in particular, that the
modulation of the amplitude is no longer periodic.

Transitions between the different stable pulsing regimes in
Fig. 3 as the feedback strength κ is changed are explored fur-
ther in Fig. 4. Panels (a) and (b) show one-parameter bifurcation
diagrams for increasing and decreasing values of κ , respectively,
where observed dynamics is represented by the pulse amplitudes
observed over one single round trip of duration τ . These diagrams
are obtained from sweeped simulation as follows. For the smallest
values of κ , the initial condition/history is set to the (unstable) lasing
equilibrium solution; for each subsequent value of κ , the previously
calculated solution [i.e., for a slightly smaller or larger value of κ

in Figs. 4(a) and 4(b), respectively] is considered initial history. In
all cases, the simulation is run over several hundreds of round trips
before the pulse amplitudes over one single round trip are recorded,
so that any transient phenomenon is disregarded. Figure 4 also illus-
trates individual dynamics at selected values of κ that are indicated
by vertical lines in panels (a) and (b). In each case, we show the
attractor in (G, Q, I)-space and in a Poincaré section represented by
the (G, Q)-plane. It is important to note here that, due to the infinite-
dimensional nature of DDEs, these are both projections: onto the
three-dimensional physical space of the variables G, Q, and I for
the trajectory and, similarly, onto the (G, Q)-plane for the Poincaré
map, which is defined by the fixed value Ieq of the intensity at the
unstable equilibrium point;17 specifically, Ieq = 1.383 in panel (c1),
Ieq = 1.412 in panel (c2), Ieq = 1.444 in panel (c3), Ieq = 1.572 in
panel (c4), and Ieq = 1.796 in panels (c5) and (d). We also show the
corresponding radio frequency (RF) spectrum (the power spectral
density) of the real-valued intensity time series.

As κ is varied, several transitions are observed between the
pulsing regimes displayed in Figs. 2 and 3. For the smallest values
of κ in Fig. 4(a), a single value is observed for the pulse ampli-
tudes. This corresponds to a periodic regime with four equidistant
pulses of equal amplitude per round trip.16 This periodic regime is
illustrated in panel (c1) for κ = 0.002, where one observes a peri-
odic orbit in (G, Q, I)-space and two corresponding points in the
(G, Q)-plane representing the Poincaré section; the RF spectrum is
discrete, featuring a main peak with large harmonics owing to the
strongly pulse-like nature of the oscillation. Figure 4(a) shows that
increasing κ leads to a transition from this periodic to a regime with
an increasingly stronger modulation of the pulse amplitude. This is
clear evidence of a torus bifurcation with subsequent quasiperiodic
or locked dynamics. Panels (c2) for κ = 0.013 show the correspond-
ing stable torus in projection onto (G, Q, I)-space; its intersection
with the Poincaré section is a densely filling closed curve in the
(G, Q)-plane, and its RF spectrum displays a large number of peaks
at incommensurate frequencies; compare with Fig. 3(a). Hence, the
dynamics on the torus is quasiperiodic (or of very high period).
When κ is increased in Fig. 4(a), different (usually very narrow) res-
onance tongues are briefly crossed, where the dynamics is locked to
a periodic orbit on the stable torus; see also Fig. 3(b). Figure 4(c3)
shows such a locked periodic regime for κ = 0.025, which lies in a
larger resonance tongue corresponding to a wider range of κ . The
trajectory in (G, Q, I)-space shows a closed trajectory, which does
not cover the entire stable torus but rather winds six times around

FIG. 4. One-parameter bifurcation diagrams of (1) for A = 2.7 and τ = 335
where κ is increased (a) and decreased (b). Also shown are representative
trajectories in (G,Q, I)-space (left), their intersection with a Poincaré section rep-
resented by the (G,Q)-plane (middle), and corresponding RF spectra (right), for
κ = 0.002 (c1), κ = 0.013 (c2), κ = 0.025 (c3), κ = 0.07 (c4), and κ = 0.14
[(c5) and (d)].
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it. The Poincaré section in the (G, Q)-plane shows the correspond-
ing six intersection points, which confirms that the system is in a 1:6
locking region. When κ is increased further, a transition is observed
in Fig. 4(a) from quasiperiodic (or high-period) dynamics on a torus
to a chaotic regime; this is detected by a sudden growth of the maxi-
mal recorded amplitude. The chaotic regime is illustrated further in
Figs. 4(c4) and 4(c5); compare with the chaotic intensity time series
in Fig. 3(c). Here, neither the (projected) trajectory nor the Poincaré
section display a clear structure; moreover, the RF spectrum is char-
acteristic of a chaotic regime: although some clear peaks are visible,
there are multiple frequency bands in which no clear structure can
be seen. This chaotic regime is observed over a large range of κ in
Fig. 4(a) before the system jumps back, as κ is increased further, to a
stable periodic pulsing regime with five equidistant pulses per round
trip.

Starting from this periodic solution, Fig. 4(b) shows the one-
parameter bifurcation diagram of (1) for decreasing κ . The com-
parison between the bifurcation diagrams in panels (a) and (b)
highlights a region of multistability, where the chaotic regime dis-
played in Fig. 4(c5) coexists with the stable periodic regime shown in
panels (d). As can be seen from its RF spectrum, this periodic regime
features a different number of equidistant pulses in the feedback
cavity compared to the periodic regime in panel (c1). It is impor-
tant to note that the non-lasing equilibrium solution of (1) is stable
as well over the entire range of κ considered in Figs. 4(a) and 4(b).
Which regime is observed in practice in the presence of the overall
multistability depends on the considered initial condition/history.15

III. BIFURCATION ANALYSIS IN THE (τ , κ)-PLANE

The complex dynamics highlighted in Figs. 2–4 is now inves-
tigated further by means of numerical bifurcation analysis, where
the feedback delay τ and the feedback strength κ are consid-
ered the main two bifurcation parameters. This is performed with
the MATLAB-based continuation software DDE-Biftool,23–25 which
allows for the continuation of families of equilibrium and periodic
solutions of delay-differential equations, as well as their bifurca-
tions. The results are presented in the form of bifurcation diagrams
consisting of bifurcation sets in the (τ , κ)-plane, formed by curves
of codimension-one bifurcations that bound regions of different
dynamics.

A. Bifurcation diagram for A =2.7

Figure 5 shows the bifurcation diagram in the (τ , κ)-plane for
the value A = 2.7 of the pump parameter considered in Figs. 3 and 4;
its panel (a) shows the range of τ from 0 to 550, and panel (b) is
an enlargement that focuses on the resonance structures we con-
sider here. A main feature of Fig. 5 is a single curve H of the Hopf
bifurcation of the lasing (i.e., non-zero intensity) equilibrium of (1):
when this curve is crossed, for instance, increasing τ at constant
κ , a small-amplitude periodic solution emerges. More precisely, the
bifurcating periodic solution is locally stable when the Hopf bifurca-
tion is supercritical, indicated by bold parts of the curve H, and it is
locally unstable along thin parts of H where the Hopf bifurcation is
subcritical. The criticality of H changes at codimension-two degen-
erate Hopf bifurcation points DH, indicated by blue dots in Fig. 5.

FIG. 5. Two-parameter bifurcation diagram of (1) in the (τ ,κ)-plane for A = 2.7
(a), showing a curve H of Hopf bifurcation (blue), curves T of torus bifurcation
(green), curves S of saddle-node bifurcations of periodic orbits (red), as well as
codimension-two points DH of degenerate Hopf bifurcation points (blue dots) and
HH of Hopf–Hopf bifurcation (green dots). The enlargement in panel (b) addition-
ally shows some of the (lowest-order) resonance points along the torus bifurcation
curves and the curves S of saddle-node bifurcations of periodic orbits (magenta)
bounding the corresponding resonance tongues. The vertical gray line indicates
the value of τ considered in Fig. 4. The inset shows a further enlargement of
the framed area in panel (b), highlighting the emergence of the torus bifurcation
curves from a Hopf–Hopf bifurcation point.

We also find codimension-two Hopf–Hopf bifurcation points HH
in Fig. 5; they arise here due to self-intersections of the curve H and
also lead to changes of criticality of the Hopf bifurcation. When τ

is increased for a (sufficiently large) fixed value of κ , several stable
periodic solutions emerge successively from the supercritical parts of
the curve H, and their periods are close to submultiples of the delay
τ .10,17 Past the Hopf bifurcations where they emerge, these periodic
solutions correspond to pulsing patterns with different numbers of
equidistant pulses in the feedback loop;10 these numbers are shown
in boxes in Fig. 5(a) for the respective supercritical parts of the curve
H. The increasing level of multistability with the delay τ is typical
for delay systems12 and has been discussed in the literature for this
particular system.36

The codimension-two points DH and HH in Fig. 5 also give
rise to additional bifurcation curves in the (τ , κ)-plane. From each
degenerate Hopf bifurcation point DH, where the Lyapunov coef-
ficient (third-order normal form coefficient) vanishes, emerges a
curve S of saddle-node bifurcation of periodic orbits;10,17 for sake
of keeping this exposition focused, Fig. 5 only shows the curves S
that emerge from points DH for low κ near τ = 300, which we

Chaos 33, 023142 (2023); doi: 10.1063/5.0124693 33, 023142-7

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

require for the discussion in Sec. III B. Moreover, at each Hopf–Hopf
bifurcation point HH, where the linearization of system (1) at the
bifurcating lasing equilibrium has two pairs of complex conjugate
eigenvalues on the imaginary axis, two curves of torus bifurcation T
can typically emerge.33 For sake of clarity, only two pairs of curves T
are shown in Fig. 5: those emerging from the two points HH for low
values of κ around τ = 335. Indeed, many Hopf–Hopf bifurcation
points are encountered as the delay τ is increased, resulting in a very
complex bifurcation diagram with many more curves of torus bifur-
cation; this has been discussed in the literature10,17,36 and is beyond
the scope of this article.

1. Connecting resonance tongues

We now focus on the two shown pairs of torus bifurcation
curves T. They are shown in Fig. 5(b) in the enlarged parame-
ter area of interest, where they are clearly seen to emerge from
the two respective Hopf–Hopf bifurcation points; see also the fur-
ther enlargement in the inset. From each torus bifurcation curve T
bifurcates a smooth invariant torus on which the (multi-frequency)
dynamics is either quasiperiodic or locked. Resonance tongues in
the (τ , κ)-plane emerge from p :q resonance points, some of which
are highlighted on the curves T by black dots: at these points, the
pair of critical complex conjugate Floquet multipliers on the unit
circle e±2πα has the rational rotation number α =

p

q
, where p and q

are relatively prime.33 A pair of curves S of saddle-node bifurcation
of periodic orbits emerge from each p :q resonance point; they form
the boundaries of a p :q resonance tongue in which the dynamics is
p :q locked on the torus, that is, periodic rather than quasiperiodic;
see Fig. 4(c3) for an example of such locked dynamics.

Figure 5(b) also shows curves S bounding the resonance
tongues of some lower-order resonances; we remark that the pairs
of curves S bounding narrow resonance tongues are sometimes so
close to each other that they appear as single curves in the param-
eter plane. We find that these pairs of curves S connect different
resonance points on the pair of torus bifurcation curves T emerging
from the respective Hopf–Hopf bifurcation point HH; specifically,
a given p :q resonance point on one of the curve T connects to
a p :(p + q) resonance point of the other curve T. To the best
of our knowledge, such connecting resonance tongues have been
observed only once before, namely, in a constructed system of DDEs
with two state-dependent delays.37 The Yamada model with a sin-
gle feedback term and with a constant (non-state-dependent) delay,
hence, constitutes the first physically relevant and yet also simplest
mathematical model featuring connecting resonance tongues near a
Hopf–Hopf bifurcation point. Our results and those in Ref. 37 sug-
gest that this phenomenon is generic and related to the occurence
of chaotic dynamics near Hopf–Hopf bifurcation. The argument
is as follows. Close to the resonance points, the dynamics is either
p :q or p :(p + q) locked on the smooth invariant torus that emerges
from the respective torus bifurcation. The fact that the bound-
ing saddle-node bifurcation curves S connect means that the p :q
locked periodic solutions smoothly evolves into p :(p + q) locked
solutions. This is perfectly possible in a phase space of dimension
at least three, but it cannot happen while these periodic orbits lie on
a smooth invariant two-dimensional torus throughout (there can-
not be two periodic orbits of different winding number on one and

the same two-dimensional torus). Therefore, the smooth invariant
torus bifurcating from the respective torus bifurcation T necessarily
breaks up at some point when going through the connecting reso-
nance tongue. Such torus break-up can typically lead to the creation
of chaotic dynamics through a quasiperiodic route to chaos.38,39,41

The simulations shown in Fig. 4 and, in particular, the appear-
ance of chaotic dynamics can, therefore, be interpreted as follows.
For a fixed value of τ = 335 [indicated in Fig. 5(b) by the gray verti-
cal line] and for small κ , a stable periodic solution (corresponding
to four equidistant pulses in the feedback loop) is observed; [see
Fig. 4(c1)]. When κ is increased, it loses stability when the bottom-
most torus bifurcation curve is crossed in Fig. 5(b). This leads to
the emergence of a stable invariant torus with dynamics that is
quasiperiodic or p :q locked with very high q; see Fig. 4(c2). As κ

is increased, the rotation number on the torus evolves and different
resonance tongues are crossed, only the larger of which with low q
can be identified in Fig. 4(a). More precisely, the crossing of the first
two resonance tongues shown in Fig. 5(b) cannot be identified in
Fig. 4 due to the fact that these resonance tongues are very narrow.
On the other hand, the third resonance tongue shown in Fig. 5(b)
and crossed as κ is increased is significantly wider, and it is clearly
identified in panels (a) and (c3) of Fig. 4. As κ is increased further,
the torus breaks up and chaotic dynamics is observed over a large
range of κ , as is illustrated in Figs. 4(c4) and 4(c5). This is related to a
bifurcation of the torus itself, which cannot be continued easily40 and
is not displayed in Fig. 5(b). Indeed, this overall transition provides
an explanation for experimentally observed chaotic pulsing regimes
as in Fig. 1(d), which are reported here in this microlaser system for
the first time.

B. Influence of decreasing the pump parameter A

We now investigate how the structure of resonance tongues
highlighted in Fig. 5(b) evolves when the pump parameter A is
decreased down toward the value A = 2. The motivation for this
is twofold. First, in the experiment, the pump parameter is related
to the amount of energy provided to the microlaser through optical
pumping and, as such, is the main control parameter in the experi-
ment. Second, a recent study has shown that for A = 2 multistable
periodic regimes are found, which include non-equidistant pulses in
the feedback cavity.16 Each of these periodic non-equidistant pulsing
regimes exists in a very large region of the (τ , κ)-plane of feedback
parameters, which is bounded by saddle-node bifurcation curves S
of periodic solutions. It has been suggested that these regions are in
fact very large resonance tongues, and we now investigate the mech-
anism for the emergence of such unusually large locking regions.
For clarity, we focus on resonance tongues associated with one pair
of torus bifurcation curves only, namely, the one that emerges from
the Hopf–Hopf point HH with the smallest value of τ in Fig. 5(b).

1. Rotation number near Hopf–Hopf point

Figure 6 shows the bifurcation diagram of (1) for A = 2.42 in
the relevant region of the (τ , κ)-plane, featuring the Hopf bifur-
cation curve H with the Hopf–Hopf bifurcation point HH, the
associated two torus bifurcation curves T, and resonance tongues
arising from selected p :q resonance points; the latter are bounded
by pairs of curves S of saddle-node bifurcations of periodic orbits.

Chaos 33, 023142 (2023); doi: 10.1063/5.0124693 33, 023142-8

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 6. Bifurcation diagram in the (τ , κ)-plane for A = 2.42 near the leftmost
Hopf–Hopf bifurcation point HH (green dot), showing the self-intersecting Hopf
bifurcation curve H (blue), the emerging pair of torus bifurcation curves T (green),
and curves S (magenta) of saddle-node bifurcations of periodic orbits that bound
resonance tongues arising from selected resonance points (black dots); the open
circle on the lower curve T indicates the minimum of the rotation number. Curves S
near this minimum that bound resonance tongues that connect two p :q resonance
points are shown in lighter magenta. The inset is an enlargement near the 1 :3
point.

The lower curve T in Fig. 6 has two fold points (with respect to τ )
close to the Hopf–Hopf point HH; moreover, the rotation number α

first decreases along this curve away from HH, reaches a minimum
of below 1

11
near (but not exactly at) the leftmost sharp fold, and

subsequently increases again. This is in contrast to the properties of
the corresponding lower torus bifurcation curves T for A = 2.7 [see
the leftmost part of Fig. 5(b)], which lacks the leftmost sharp fold
and along which α increases monotonically from the point HH. The
non-monotonicity of α along this curve T in Fig. 6 is associated with
an intriguing phenomenon: the lighter colored saddle-node curves
S connect p :q resonance points on the decreasing part to the left of
the minimum with p :q resonance points on the increasing part to
the right of the minimum. Beyond HH, on the other hand, we find
connections by pairs of curves S between p :q on the upper curve T
and p :(p + q) resonance points on the other curve T; this situation
is as discussed above for A = 2.7. An interesting difference with the
case A = 2.7 lies in the shape of the 1 :4 resonance tongue in Fig. 6.
Notice that the 1 :4 locking region in the (τ , κ)-plane is significantly
larger than for the other resonances, and it is bounded by a single
curve S; as the inset in Fig. 6 shows, this curve passes very close to
the 1 :3 resonance point but does not connect to this point.

2. Disappearance of Hopf–Hopf point

The Hopf–Hopf bifurcation point HH in Fig. 6 arises because
the curve H has a little loop. Comparison with Fig. 5(b) shows that
this loop becomes smaller when the pump parameter A is decreased.
Figure 7 shows that the loop and the point HH disappear when A
is decreased further; moreover, it explains what this means for the
associated curves T of torus bifurcation. The rotation number α

along the torus bifurcation curves is represented by a color scale
in the larger view of panels (a1)–(c1), while panels (a2)–(c2) are
further enlargements. The observed configuration in Fig. 7(a) for
A = 2.39 is topologically as that for A = 2.42 in Fig. 6. However,
the point HH in Fig. 7(a) is now at a lower value of κ and the loop

FIG. 7. Bifurcation diagram in the (τ ,κ)-plane illustrating the disappearance of
the Hopf–Hopf bifurcation point HH from Fig. 6 for A = 2.39 (a), A = 2.38 (b),
and A = 2.35 (c). Panels (a1)–(c1) show a larger view of the Hopf bifurcation
curve H and the torus bifurcation curves T, where the rotation number α along T
is indicated according to the color bar and low-order resonance points are marked.
Panels (a2)–(c2) are further enlargements.

of the curve H is even smaller; similarly, the part of the lower torus
bifurcation curve T along which the rotation number α decreases is
significantly smaller than for A = 2.42. Figure 7(b) for A = 2.38 is
just past the transition of codimension three where the loop disap-
pears. It suggests that this type of degenerate Hopf–Hopf bifurcation
occurs when the point HH and the leftmost fold of the lower curve
T coincide at a cusp point of the curve H. As a result, for lower val-
ues of A, as can be observed clearly in Fig. 7(c) for A = 2.35, the two
torus bifurcation curves have merged into a single smooth curve T,
which is now not connected to the Hopf bifurcation curve. Notice
that the rotation number α changes smoothly along this single torus
bifurcation curve and has a minimum close to the leftmost fold point
of T.

3. Growth and merging of resonance regions

We now show how the resonance tongues identified thus far
grow into large and experimentally relevant regions of different
observable locked periodic dynamics. To this end, Fig. 8 shows how
the bifurcation diagram of (1) in the relevant larger region of the
(τ , κ)-plane changes when the pump parameter A is decreased from
A = 2.29 in panel (a) to A = 2.23 in panel (d). The focus here is
on curves S of saddle-node bifurcation of periodic orbits that bound
the (shaded) regions with stable 1 :4 dynamics, that is, where one
observes periodic pulsing with four (non-equidistant) pulses in the
feedback cavity.
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FIG. 8. Bifurcation diagram of (1) in the (τ , κ)-plane for A = 2.29 (a),
A = 2.28 (b), A = 2.25 (c), and A = 2.23 (d), where the region of stable
four-pulse solutions is shaded; compare with Fig. 6.

Figure 8(a) for A = 2.29 shows that the 1 :4 resonance tongue
bounded by a single curve S, which was identified in Fig. 6, has
grown; note that this curve S in Fig. 8(a) still connects to and from
a 1 :4 resonance point on the torus bifurcation curve T associated

with the leftmost point HH that just disappeared. Close by, there
is another, large 1 :4 resonance region that is bounded by another
curve S and exists for larger values of τ ; we remark that this reso-
nance region does not connect to any resonance point and extends
to very large values of τ (as we checked by computing its bound-
ing curve S beyond the shown range). When the pump parameter
is changed to A = 2.28 as shown in Fig. 8(b), these two reso-
nance regions have merged into a single and very large 1 :4 locking
region emerging from the left-most 1 :4 resonance point, which
happens to be near the right-most fold on the associated curve T.
This change occurs in a saddle transition of the bounding curves
S of saddle-node bifurcations of periodic orbits, where the two
nearby fold points of the two curves S meet and the curves connect
differently.

Panels (a) and (b) of Fig. 8 also show a further locking region
that emerges from a 1 :4 resonance point on a second torus bifurca-
tion curve T, which has a fold with respect to τ and then terminates
for low values of κ at a 1 :1 resonance point on the shown curve
S of saddle-node bifurcation of the (equidistant) periodic pulsing
solutions;10 note that this curve S emerges near the leftmost mini-
mum of the curve H from a degenerate Hopf bifurcation point DH.
The two fold points of the two curves T move closer to each other
with decreasing A, and in Fig. 8(c), for A = 2.25, they now con-
nect differently; also after a saddle-transition, now of the curves T.
This means, in particular, that the two 1 :4 resonance points now
lie on the same curve T. As A is decreased further, these two points
meet and then disappear, as is shown in Fig. 8(d). Simultaneousy,
the two resonance tongues meet, and their bounding curves S con-
nect differently. This leads to a very large resonance region (shaded)
of 1 :4 locked pulsing, bounded by a curve S, which is not con-
nected anymore to any of the torus bifurcation curves found in
the considered parameter range. Inside this large four-pulse region,
one finds a smaller region, bounded by a second curve S, where
the locked solution does not exist. Notice further that pairs of cusp
points have occurred in Figs. 8(c) and 8(d) on the upper curve S and
in panel (d) on the lower intermediate curve S; these cusp points
appear locally in codimension-three swallowtail bifurcations and
lead to small regions with additional 1 :4 locked solutions that are
not discussed further in this article.

The changes to the curves T and the bounding curves S of
the 1 :4 resonance regions occur over a small parameter range of A
and are difficult to see on the scale of Fig. 8. This is why they are
illustrated further in Fig. 9 with enlargements near the two 1 :4 reso-
nance points involved. Figure 9(a) for A = 2.29 [an enlargement of
Fig. 8(a)] clearly shows the respective two resonance tongues emerg-
ing from the 1 :4 resonance points near the folds of the two different
torus bifurcation curves T. Panel (b) for A = 2.2605 is just before the
saddle transition of these curves T: the two folds are now extremely
close together and there are two 1 :5 resonance points practically on
them. When the curves T are connected differently, just after the
saddle transition for A = 2.25 as shown in Fig. 9(c) [an enlarge-
ment of Fig. 8(c)], the two 1 :4 resonance points are now clearly on
the same curve T. This means, in particular, that there must be an
extremum of the rotation number. Different resonance points are
indicated along the curves T to give information on the rotation
number along them, and this shows that the point m is a minimum
near 1

5
. Similarly, there is a maximum M of the rotation number,
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FIG. 9. Disconnecting 1 :4 resonance tongues of (1) in the relevant region
of the (τ , κ)-plane, showing the relevant bifurcation curves for A = 2.29 (a),
A = 2.2605 (b), A = 2.25 (c), and A = 2.23 (d); compare with Fig. 8.

also near 1
5
, on the other torus bifurcation curve T in panel (c).

The value of the rotation number at the minimum m increases as
A is decreased; in the process, the two 1 :4 resonance points move
toward each other until they collide and disappear when the min-
imum moves through 1

4
, as discussed previously. The result is the

situation for A = 2.23 in Fig. 9(d) [an enlargement of Fig. 8(d)],
where the bounding curves S of the associated resonance tongues
are now connected differently: they lie either side of the point m on
T and no longer interact with this curve of torus bifurcation. Note
that, throughout in Fig. 9, the lower parts of curves T are very close
to the curve S that emerges from the point DH near the minimum
of the Hopf bifurcation on the left.

Finally, as A is decreased further, the region without locking
inside the large 1 :4 pulsing region in Fig. 8 shrinks and eventually
disappears from the shown range of τ through a minimax transi-
tion of the bounding curve S (this is not illustrated here). Overall,
this leads to a single, very large locking region, which is not con-
nected to any resonance point along a torus bifurcation curve and
which extends to very large values of the delay time τ . Similar tran-
sitions of other resonance tongues exist as well (but are not shown
in Figs. 8 and 9); this agrees with the observation of associated
regions with stable periodic solutions with different numbers of
non-equidistant pulses.16 From a practical point of view, this means
that, for these lower values of the pump parameter A, locked peri-
odic solutions corresponding to such non-equidistant pulses in the

external feedback cavity can be observed over very large ranges in
the (τ , κ)-plane. This agrees with the behaviour observed recently in
both the model and an actual experiment,16 which confirms that the
non-equidistant pulsing periodic regimes originate in a resonance
phenomenon.

While the resulting regions of stable pulsing solutions are
large in the (τ , κ)-plane, we stress that the transitions of resonance
tongues that generate them happen in a very narrow range of A.
Hence, the system is highly sensitive to small changes of the pump
parameter. This is of practical importance since the pump param-
eter A is a main control parameter in the actual experiment: even
a small change in A may result in the disappearance of the locked
solution (corresponding to non-equidistant pulses in the feedback
cavity) and, as a consequence, the appearance of qualitatively differ-
ent long-term dynamics.15 This observed change with A appears to
be sudden from an experimental and practical perspective; math-
ematically, on the other hand, it is explained by the sequence of
transitions of resonance tongues presented above.

C. Disconnecting and disappearing resonance

tongues near extrema of the rotation number

While Figs. 8 and 9 illustrate the case of 1 :4 resonance, discon-
necting resonance tongues are a generic phenomenon that occurs
for any pair of p :q resonance points near an extremum of the rota-
tion number on a torus bifurcation curve T. We now discuss in more
detail the disappearance of pairs of resonance points and the conse-
quences for the associated resonance tongues. To our knowledge,
this generic phenomenon of codimension three [meaning that it
happens at a specific point in a three-dimensional parameter space,
as the (τ , κ , A)-space of (1) considered here] has not been reported
in the previous literature. In fact, there are actually two different
cases, as is sketched in Fig. 10 for the case that the extremum on
T is a minimum m in a two-parameter plane. In both columns
(a) and (b) of Fig. 10, a pair of p :q resonance points with m <

p

q

collides when m increases and reaches the value m =
p

q
as a third

parameter is changed and, subsequently, does not exist any longer
on the curve T when m >

p

q
. As a function of the third parameter

[A for (1)], this corresponds to a fold point of p :q resonance points
on the curve T. Column (a) shows the situation encountered in Sec.
III B 3, where the resonance tongues “point away” from the mini-
mum m; as a result, the pairs of bounding curves S then meet at m
when m =

p

q
and form two curves on either side of the curve T for

m >
p

q
. Since the bounding curves S are then no longer connected

with T at a point of resonance, we refer to this generic case as that
of disconnecting resonance tongues. In contrast, the p :q resonance
tongues in Fig. 10(b) connect near the minimum m, meaning that
the curves S bound a single small resonance region. This p :q reso-
nance region shrinks to a point when m =

p

q
and has disappeared

for m >
p

q
; left are then only r : s resonance tongue with m < r

s
, of

which one is shown in the sketch. We refer to this generic case as
that of disappearing resonance tongues.

Figure 10 illustrates the codimension-three transitions of dis-
connecting and disappearing resonance tongues locally for a single
pair of resonance points. As the value of m increases smoothly and
monotonically with a third parameter, the same local scenario takes
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FIG. 10. Sketches of the two scenarios for disconnecting (a) and disappearing (b)
p :q resonance tongues near an extremum of the rotation number on a curve T of
torus bifurcation. Shown is the case for a minimum m where, from top to bottom,
m <

p

q
, m =

p

q
and m >

p

q
; column (b) also shows a connecting r :s resonance

tongue with m < r
s
.

place at any point on the torus bifurcation T where the rotation
number is rational. Since this set is dense in T, any change of the
parameter leads to infinitely many disconnecting or disappearing
resonance tongues. In other words, Fig. 10 represents a countably
infinite sequence of such transitions of resonance tongues as the
third parameter is changed and the minimum m increases. We
remark that the case of a maximum M on T is completely analogous:
here the resonance tongues merge or disappear at rational points
when M decreases with a third parameter. With this interpretation,
we claim that columns (a) and (b) of Fig. 10 represent the unfold-
ing of the two cases of disconnecting and of disappearing resonance
tongues.

Proving that these unfoldings are generic is a challenge that is
left for future work, especially since it would require the simpler set-
ting of an ODE rather than a DDE as studied here. However, the
correctness of these two unfoldings is supported by numerical evi-
dence in the (τ , κ)-plane of (1). Specifically, Fig. 11 highlights the
local situations before and after the respective transition for the dis-
connecting resonance tongues in column (a) and for disappearing
resonance tongues in column (b); here the parameter A changes the
value of the minimum m on the curve T as indicated. Panels (a1)
and (a2) of Fig. 11 show a further enlargement that illustrates how
the two shown 1:4 resonance tongues from Fig. 9 disconnect from
T; compare with Fig. 10(a). Similarly, panels (b1) and (b2) show the
disappearance of a resonance tongue that connects two 1 :10 reso-
nance points on the curve T; notice that the other shown resonance
points and tongues have moved closer to m and will disappear when
A is increased further. Note that these resonance tongues disappear
at the minimum near the Hopf–Hopf bifurcation point HH shown
in Fig. 6.

To complete this section, we present how extrema arise on a

FIG. 11. Disconnecting (a) and disappearing (b) resonance tongues in the
(τ , κ)-plane of (1) near a minimum m of the rotation number on the torus bifur-
cation T; here A = 2.25 with m = 0.234 (a1), A = 2.23 with m = 0.257 (a2),
A = 2.42 with m = 0.032 (b1), and A = 2.46 with m = 0.104 (b2). Compare
panels (a) with Fig. 9(c) and 9(d) and panels (b) with Fig. 6.

torus bifurcation curve in a two-parameter plane. As row (a) of
Fig. 12 shows, the generic mechanism is that of a saddle-transition of
a pair of torus bifurcation curves, which necessarily needs to respect
and agree with the respective changes of the rotation number along
these curves. Note that generically the rotation number is not con-
stant, and Fig. 12(a) shows the case that it increases as indicated by
the arrows on the curves labeled T. As a third parameter is changed,
the saddle transition occurs: here the two curves meet as shown
at a singular point (which is a saddle point of the surface of torus
bifurcations in the three-dimensional parameter space). The locus
of torus bifurcations connects differently past the saddle transition,
as is shown. On the level of just the curves T, this is a standard way of
reconnecting the respective branches of torus bifurcation. However,
we can conclude more here: since the rotation number is unique and
common to all branches at the singular point, a minimum m on one
curve T and a maximum M on the other curve T are necessarily cre-
ated in the process. The sketch in Fig. 12(a) represents the generic
case of the saddle transition of a locus of torus bifurcations. As we

FIG. 12. Saddle transition of torus bifurcation curves generating a minimum m
and a maximum M of the rotation number. Panels (a) are sketches, while panels
(b) show the (τ , κ)-plane of (1) just before (b1) and after (b2) the saddle transition,
for A = 2.2605 and A = 2.25, respectively. Compare with Figs. 9(b) and 9(c).
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discussed in Sec. III B 3, such a saddle transition occurs in the (τ , κ)-
plane of (1), namely, between the two situations shown in Figs. 9(b)
and 9(c). This is illustrated more clearly in Fig. 12(b) with enlarge-
ments near the saddle transition that also shows the rotation number
along the respective curves T. Notice that the situation in panel (b1)
is very close to the saddle transitions, where the curves T connect.

IV. CONCLUSION

We investigated the emergence of complex multi-frequency
dynamics in an excitable system subject a delayed feedback
loop—specifically, a microlaser with optical feedback from an exter-
nal mirror. The Yamada model with delayed feedback has been
shown to reproduce accurately a range of phenomena observed
experimentally in an excitable microlaser subject to delayed opti-
cal feedback. This includes quasiperiodic dynamics, locked periodic
dynamics on a torus and chaotic dynamics. A bifurcation analysis in
the physically relevant variables, the feedback delay τ , the feedback
strength κ , and the pump parameter A, unveiled the key role played
by resonance tongues in the (τ , κ)-plane, which arise from torus
bifurcation curves that, in turn, emerge from Hopf–Hopf bifurca-
tion points on the main curve of Hopf bifurcations. In particular, the
emergence of chaotic dynamics in the DDE results from the mech-
anism of torus breakup. This is associated with the observation of
connecting resonance tongues, which connect p :q resonance points
with p :(p + q)resonance points.

Our results confirm that non-equidistant pulsing periodic solu-
tions originate in resonance phenomena. Unexpectedly large lock-
ing regions in which such pulsing regimes are observed emerge in
the (τ , κ)-plane from initially much smaller resonance tongues in
an intriguing sequence of transitions when the pump parameter A is
changed. In particular, this involves several re-arrangements of pairs
of bifurcation curves in saddle transitions, as well as pairs of p :q res-
onance points coming together at points on a torus bifurcation curve
where the rotation number has an extremum. We presented (con-
jectural) unfoldings of the two generic cases of disconneting and of
disappearing resonance tongues and also showed how extrema on
torus bifurcation curves arise. In the Yamada model with delayed
feedback, the respective transitions all occur in quick succession,
showing that the system is very sensitive to small changes in the
pump parameter A. Because A is a main control parameter this is of
practical interest in an actual experiment—the bifurcation analysis
presented here explains the consistency and genericity of what may
otherwise be interpreted as a non-obvious sudden jump from sta-
ble single-pulse behavior to pulsing with several equidistant and/or
non-equidistant pulses.

From a more general point of view, the DDE model consid-
ered here has only two main ingredients: excitability and feedback.
As such, our results are expected to be of more general practical
interest, beyond the particular laser device considered in this paper.
Examples with these same ingredients are other optical systems with
different types of feedback, as well as biological systems with delayed
feedback, which show considerable similarities, as confirmed by a
recent study with an excitable cell.2
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