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We report on experimental evidence of neuronlike excitable behavior in a micropillar laser with saturable
absorber. We show that under a single pulsed perturbation the system exhibits subnanosecond response
pulses and analyze the role of the laser bias pumping. Under a double pulsed excitation we study the
absolute and relative refractory periods, similarly to what can be found in neural excitability, and interpret
the results in terms of a dynamical inhibition mediated by the carrier dynamics. These measurements shed
light on the analogy between optical and biological neurons and pave the way to fast spike-time coding
based optical systems with a speed several orders of magnitude faster than their biological or electronic
counterparts.
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Excitable response is a striking and generic response
encountered in vastly different nonlinear systems from
biology [1] to chemistry [2] and optics [3]. It can be
phenomenologically described as an all-or-none type of
response to an input perturbation: below the excitable
threshold, the system responds linearly with a very small
amplitude; above the excitable threshold, it gives birth to a
large amplitude, nonlinear response whose shape and
amplitude are almost independent from the input perturba-
tion. In neurons, it is well known that the action potential
that propagates along the axons has an excitable character
[4]. Since excitability is at the base of the enormous
processing capabilities of the brain, it has become a subject
of study in nanoelectronics [5] as well as in photonics and
nanophotonics with the goal to build neural networks
architectures for computing [6].
As a standard test for excitability it is usually shown that

the amplitude of the response versus the perturbation
amplitude exhibits a steplike behavior. However, there exists
another important property of excitable systems which is the
existence of a refractory period. The refractory period is
the time period following a first firing pulse duringwhich the
system cannot be excited anymore and is the crucial property
responsible for the symmetry breaking phenomenon
allowing the unidirectional propagation of activity pulses.
This was already noted in [7] where a model for a population
of spiking neurons with a refractory period but without firing
threshold evidences stable propagation of activity pulses.
From a signal processing point of view, should it regard
excitable logic, cognitive processing, or pulse reshaping, the
ultimate processing speed of optical or electronic systems
depends also crucially on this parameter. In neuron physi-
ology or dynamics textbooks, one usually makes the dis-
tinction between the absolute and the relative refractory
periods. During the absolute refractory period, the inhibition
is complete, while in the relative refractory period, an activity
pulse can be emitted for a sufficiently high perturbation

amplitude. These periods correspond, respectively, to the
depolarization of the axon membrane during the activity
pulse buildup, and to the repolarization and hyperpolariza-
tion recovery at the end and after the activity pulse has
reached its maximum amplitude. During the relative refrac-
tory period the amplitude of the second response pulse is
lower than that of the first one because of inhibition effects.
In optics, excitable responses have been demonstrated in

many different systems and configurations, and in particu-
lar in semiconductor-based systems where one can benefit
from fast response time scales and small footprint [8–17].
However, if the absolute refractory period has been some-
times measured or studied, it has not yet been the case for
the relative refractory period and the associated inhibitory
effects.
In this Letter, we study the absolute and relative refractory

periods in a micropillar laser with a saturable absorber. We
demonstrate the existence of a very fast excitable response
pulse (∼250 ps), together with the characterization of the
absolute and relative refractory periods. In analogy with
the dynamics observed in real neurons, we demonstrate the
inhibitory role of the carrier population dynamics and gain
physical insight on the origin of both refractory periods by
comparing the experimental results to a standard model of a
laser with saturable absorber.
Semiconductor lasers with saturable absorber can build

fast excitable units and allow subnanosecond excitable
pulses as measured in planar systems [15]. Moreover, the
micropillar laser design [18] allows for a compact system
amenable to integration or to coupling of a large number of
excitable unit cells with even shorter response times because
of the smallness of the cavity and of the shortened material
recombination times. Our excitable system is an optically
pumped, micropillar laser embedding in its cavity center an
active and a passive zone, thanks to an original design [19].
The active and the passive zones consist of, respectively, two
and one InGaAs=AlGaAs quantum wells placed at the
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antinode of the field at cavity resonance (980 nm). By a
careful engineering of the multilayer stack, an external
optical pump emitting around 800 nm can be absorbed in
the active zone and not in the passive zone, thus playing the
role of a saturable absorber. The 4 μm diameter micropillar
laser is fabricated by etching with inductively coupled
plasma. The bottommirror is only partially etched to prevent
the pump laser, possiblywider than themicropillar diameter,
from reaching the absorbing substrate and generating heat.
A thick layer of SiN is then evaporated on the micropillar to
protect the stack from oxidation and increase lateral heat
dissipation. The index contrast between the semiconductor
and the SiN layer remains sufficiently high for the field
confinement to be unaffected by the presence of this layer. A
second plasma-assisted (anisotropic) etching of the dielec-
tric layer is conducted until the top of the micropillar is
completely uncovered, leaving approximately a 2 μm thick
SiN layer around the micropillar (Fig. 1). The micropillar is
optically pumped with a diode-array laser emitting at
794 nm. Optical perturbations are produced by a 80 MHz
model-locked Ti:Sa laser emitting in the pump window
around 800 nm. Its repetition rate is controlled by a pulse
picker and the measured pulse duration is 80 ps.
We first study the excitable response of the micropillar

under a single pulse excitation. In excitable lasers with SA,
the self-pulsing regime occurs immediately at laser thresh-
old through a homoclinic bifurcation [20] and the system is
excitable for a bias pump below the laser threshold.
Perturbation pulses of varying amplitudes are thus sent onto
the micropillar optically biased in the excitable regime. The
response amplitudes are detected with a 5 GHz bandwidth
avalanche photodetector and acquired on a 6 GHz band-
width oscilloscope. We acquire about 104 perturbation
pulses and measure the maximum of the responses. The
median of the results is calculated and displayed on
Fig. 2(a). The median is chosen here instead of the mean
because it is a more robust statistical indicator, in particular

since we know the system’s response is very sensitive to
noise at the excitable threshold as was already studied in
[15]. The response exhibits a typical excitable behavior with
a sharp jump. It is well understood [15,21] and corresponds
to the crossing of the unstable manifold emanating from the
saddle point created when the system is close to a homo-
clinic bifurcation. As the bias pump intensity decreases, the
excitable threshold increases and the amplitude of the
response decreases as well, until there is no more jump at
threshold, which corresponds to the disappearance of the
excitable behavior. This demonstrates clearly the static
control of the excitable threshold with the bias pumping.
The dependance of the excitable threshold value with the
pump level is linear as shown in inset of Fig. 2(a), for bias
pumps not too far from the laser threshold. For lower pump
values it becomes difficult to identify the excitable threshold
because the fluctuations in the response become of the same
order as the response jump. However, at very low pump
powers (P ¼ 0.2PSP), the excitable character completely
disappears and the system enters the standard laser regime,
thus displaying gain switching.
We split the input perturbation in two and introduce a

variable delay in one of the optical paths to generate two
consecutive pulses. Both perturbation pulse amplitudes are
set to twice the excitable threshold to a single input
perturbation pulse so that, when acting alone, each pulse
gives the same response amplitude. We then monitor the
amplitude of both pulses (Fig. 3) for time delays between
194 and 508 ps. One notes a decrease in the response
amplitude to the second perturbation for short delays.
When the second perturbation pulse becomes close enough
to the first one, the amplitude of the response to the second
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FIG. 2 (color online). (a) Amplitude of the response R1 to a
single pulse perturbation versus perturbation energy E for
varying bias pump P relative to the self-pulsing threshold
PSP ¼ 694 mW. (b) Theoretical response amplitude R1 to single
input δ-perturbation pulse μδ for different bias pumps μ1 ranging
from 2.8 to −42.2. Note that the curves are offset by μ1 for clarity.
(c) Dependance of the excitable threshold Eth (red circles) with
reduced bias pump P=PSP and linear fit (blue line). (d) Excitable
threshold μδ versus bias pump μ1. The blue line is the theoretical
appproximation given by −μ1 þ 1þ μ2.

FIG. 1 (color online). Sketch and scanning electron microscope
(SEM) image of the micropillar laser with saturable absorber (see
text). Pump light (red arrow) is incoming from the top and is
partially reflected from the remaining part of the lower Bragg
mirror.
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perturbation pulse decreases abruptly, while the first pulse
amplitude increases because of the interaction with the
rising front of the second perturbation pulse. For a delay of
the order of 150 ps we anticipate a total disappearance of
the response, that marks the onset of the absolute refractory
period (close to the excitable pulse duration of 190 ps). For
delays between 150 and 350 ps, the response of the second
pulse is inhibited and its amplitude is lower than for longer
delays. The system is therefore in the relative refractory
period. To check for the excitable character in this regime,
we have performed measurements with a fixed perturbation
amplitude of the first pulse and a varying perturbation
amplitude of the second pulse. Indeed, it is known that a
standard, nonexcitable, laser can show inhibition of the
second response pulse when excited by two consecutive
pulses. The results are shown on Fig. 4(a). If the second
perturbation pulse arrives after a sufficiently long time, the
system keeps an excitable character with a steplike
response. As the delay decreases, the excitable threshold
has a tendency to increase and the amplitude of the
excitable response decreases. For a 530 ps delay, however,
the response of the system is clearly not excitable anymore.
To gain more insight into the observed dynamics, we will

compare our results to a standard rate equations model of a
laser with SA. We introduce the Yamada model with
spontaneous emission as in [20]. This model has already
proved very accurate in describing the dynamics of semi-
conductor lasers with SA. It has also been recently
recognized [22] as being an optical analog to the leaky
integrate-and-fire neuron model in the limit of an infinitely
fast photon cavity lifetime, a model widely used in
computational neuroscience [23]. The model writes

_I ¼ IðG −Q − 1Þ þ βspðGþ η1Þ2;
_G ¼ b1½μ1 − Gð1þ IÞ�;
_Q ¼ b2½μ2 −Qð1þ sIÞ�. (1)

It consists of three coupled nonlinear ordinary differ-
ential equations for the intracavity intensity I, and the
scaled excess carrier densities with respect to transparency
in the gain and in the SA region G andQ. Other parameters
are μ1 the pumping intensity, μ2 the nonsaturable losses, s
the saturation parameter, βsp the spontaneous emission
factor, and η1 the transparency offset of gain. Time is
rescaled to the cavity lifetime (∼1.3 ps here) and b1;2 are
the rescaled recombination rates of carriers in the gain and
SA region. We take b1 ¼ 0.001, b2 ¼ 0.002, μ2 ¼ 2,
s ¼ 10, η1 ¼ 1.6, and βsp ¼ 10−5. These parameters are
calculated from standard semiconductor laser parameters
[15] and the recombination time scales are adjusted to
match the observations. In the absence of spontaneous
emission (βsp ¼ 0), the system admits fI ¼ 0g as invariant
manifold. Therefore, any perturbation on the slow variables
G or Q has no effect and the only way to trigger an
excitable pulse is by perturbing the laser intensity itself by
injecting resonant light into the cavity mode. In order to
account for the experimental observations we include a
spontaneous emission term. Hence, the steady state inten-
sity below threshold is not zero anymore and the system is
sensitive to perturbations on the pump. The steady state of
the system (Iss,Gss,Qss) can be simply evaluated by using a
perturbation expansion in the small parameter βsp: Iss ¼P∞

i¼0 Iss;iβ
i
sp and identically for Gss and Qss. We obtain at

order 1 in βsp: Iss ¼ βspIss1, Qss ¼ μ2ð1 − βspsIss1Þ and
Gss1¼μ1ð1−βspIss1Þwith Iss1 ¼ ðμ1 þ η1Þ2=ð1þ μ2 − μ1Þ.
Using the results derived in [20], we can find an approxi-
mation to the excitable threshold μδ;th for a delta perturba-
tion at t ¼ 0 on the pump of amplitude μδ such that
μ1 → μ1 þ μδδðtÞ and we get μδ;th ≃ −μ1 þ 1þ μ2. The
excitable threshold decreases linearly with increasing bias
pump μ1 and is independent of s at lowest order. This is due
to the fact that during the initial phase after the perturbation
the intensity is very small and hence doesn’t have a great
impact on the threshold. The results of the numerical
simulation of the single pulse response amplitude versus

(a) (b)

FIG. 3 (color online). (a) Recorded time traces for different
delays and their Gaussian fits. Upper traces are the input
perturbations and the lower traces are the system’s response.
The bias pump is set to 71% of the SP threshold. (b) Amplitude of
the response R to the first (black) and second (red or gray)
perturbation pulses for a double-pulse perturbation with variable
delays. Rth is the response amplitude at the excitable threshold.
Lines are linear fits in selected ranges and are guides for the eye.

(a) (b)

FIG. 4 (color online). (a) Experimental measurements of the
amplitude of the response to a second perturbation pulse after a
first pulse has been sent at t ¼ 0 whose amplitude is 20% above
the excitable threshold and has triggered an excitable response,
for different delays between the two pulses. Bias pumping is
0.71PSP. (b) Same as (a) according to the model [Eqs. (1)]. Time
is rescaled to photon lifetime.
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pump perturbation amplitude are shown on Fig. 2(b).
The model shows the overall behavior already discussed
and is in good qualitative agreement with the experimental
results on Fig. 2(a).
The same model was used to characterize double pulse

excitation response and the result is shown in Fig. 4(b). The
qualitative agreement between the model with the exper-
imental results on Fig. 4(a) is very good, though the
predicted time scales are notably shorter and would
certainly require a more elaborate model and more accurate
semiconductor parameters. When the second perturbation
pulse arrives long after the first excitable pulse has fired, the
response in not affected and a second excitable pulse is
emitted. When it arrives earlier in a delay such that the
carriers did not have enough time to relax to their steady
state values, the response level decreases (relative refrac-
tory period) until being completely repressed for a suffi-
ciently small delay time (absolute refractory period). Note
also the disappearance of the discontinuous response to the
second perturbation, marking the fact that the system is not
excitable anymore in this domain.
Our model reveals the underlying physical mechanism

driving the system response. It shows that the response can
be understood simply in terms of gain and carrier dynam-
ics. Indeed, the second pulse acts as a probe for the gain and
carrier dynamical evolution and the systems reacts in a
manner similar to the static case: whether a second
excitable pulse emission occurs depends on the gain and
SA depletion level at the arrival of the second perturbation.
This is illustrated in Fig. 5.

After the first pulse is emitted the recovery of both carrier
densities takes place. In the absence of any pulse the
intensity is very small and can be neglected during part of
the recovery dynamics, after the first pulse has fired. Hence,
the evolution of the net gain ΓðtÞ ¼ GðtÞ −QðtÞ − 1 is
simply given by a combination of exponentials. When the
second perturbation arrives, a pulse is emitted only if the
intensity experiences a positive net gain for a sufficiently
long period of time, i.e., if ΓðtÞ reaches positive values.
Obviously since the carrier densities have not reached
steady state and are depleted, the second pulse intensity is
lower than the first: this is the relative refractory time. If the
second pulse arrives after the carrier recovery is complete, a
pulse with identical intensity can be triggered and one can
consider that the system has left the refractory period
regime.
It is fundamental to note that the relative refractory

period and the inhibition of the response hold for any kind
of perturbation, and in particular for a perturbation at the
wavelength of the laser field. The advantage of using a
perturbation on the pump is the relative insensitivity of the
perturbation wavelength to the cavity resonance wave-
length, which shifts with the pump bias intensity and may
also shift dynamically with the carrier dynamics. This shift
may be due to either thermal or carrier effects, and would
make the experiments extremely difficult to perform and
analyze. Moreover, this scheme allows us to clearly
decouple the excitation and the response by filtering the
output intensity.
In conclusion, we have analyzed the response of an

excitable semiconductor system to single and double
pulse excitations. In the single pulse excitation regime
we have evidenced response times of the order of 200 ps
and we have shown the inhibitory role of the pump. In
the double excitation regime, we have evidenced the
absolute and relative refractory periods, for delays below
200 ps and in the 200–350 ps range, respectively, and
shown how they can be understood in terms of a dynamic
inhibition mediated by the carrier dynamics recovery.
We believe that these results pave the way to fast
spike-time coding applications for optical cognitive
computing [22], either by setting new constrains on the
spike rate or enabling new functionalities. They also
unveil the very similar behavior of the semiconductor
laser with saturable absorber and the spiking neurons,
making the former an ideal platform to study the neuro-
mimetic dynamics of an ensemble of connected unit
excitable cells or the propagation of excitable optical
nonlinear waves [24]. This can be realized using coupled
micropillar cavities [25,26] that can be arranged in various
topologies.

We thank J. Bloch and A. Yacomotti for critical reading
of the manuscript and for valuable comments and sugges-
tions. This work was partially supported by the French
Renatech network and by the ANR Blanc project Optiroc.

(a)

(b)

FIG. 5 (color online). Intensity IðtÞ, recovery dynamics of
carriers GðtÞ, QðtÞ and net gain ΓðtÞ for a double delta
perturbation at t0 ¼ 0 and t1 ¼ 250. The first perturbation has
amplitude μδðt0Þ ¼ 3.5 while the second perturbation is below
(a), μδðt1Þ ¼ 1.0, and above (b), μδðt1Þ ¼ 1.5, the excitable
threshold. Other parameters are unchanged. The initial state is
the steady state.
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